Geometry of the Kepler system in coherent states approach
We study rolling maps of the Euclidean ellipsoid, rolling upon its affine tangent space at a point. Driven by the geometry of rolling maps, we find a simple formula for the angular velocity of the rolling ellipsoid along any piecewise smooth curve in terms of the Gauss map. This result is then generalised to rolling any smooth hyper-surface. On the way, we derive a formula for the Gaussian curvature of an ellipsoid which has an elementary proof and has been previously known only for dimension two....
We compute cohomology spaces of Lie algebras that describe differential invariants of third order ordinary differential equations. We prove that the algebra of all differential invariants is generated by 2 tensorial invariants of order 2, one invariant of order 3 and one invariant of order 4. The main computational tool is a Serre-Hochschild spectral sequence and the representation theory of semisimple Lie algebras. We compute differential invariants up to degree 2 as application.
2000 Mathematics Subject Classification: 53C42, 53C15.In this article, we have studied warped product semi-invariant submanifolds in a locally Riemannian product manifold and introduced the notions of a warped product semi-invariant submanifold. We have also proved several fundamental properties of a warped product semi-invariant in a locally Riemannian product manifold.Supported by the Scientific Research Fund of St. Kl. Ohridski Sofia University under contract 90/2008.
We shall give a survey of classical examples, together with algebraic methods to deal with those structures: graded algebra, cohomologies, cohomology operations. The corresponding geometric structures will be described(e.g., Lie algebroids), with particular emphasis on supergeometry, odd supersymplectic structures and their classification. Finally, we shall explain how BV-structures appear in Quantum Field Theory, as a version of functional integral quantization.
Im ersten Teil des Artikels konstruiert der Verfasser eine geschlossene Bewegung, die an der Ähnlichkeitsgruppe definiert wird. Solche Bewegungen beschreiben periodisch sich wiederholende Prozesse für den Fall des beweglichen Gebildes, welches sich während der Bewegung ähnlich deformiert. Der zweite Teil verallgemeinert die geschlossene Bewebungen durch äquiforme Bewegungen, die so gegeben werden, dass eine Folge von erzeugenden Punkten dieselbe Bahnkurve beschreibt in der Art, dass die einzelnen...
Logaritmická spirála byla od okamžiku svého objevu studována z mnoha různých pohledů. Prvotní fascinace matematiků, z nichž někteří věnovali logaritmické spirále značnou část svého tvůrčího potenciálu, se postupně přenesla do dalších oblastí nejen přírodních věd a promítá se tak např. do fyziky, biologie, ale také různých inženýrských disciplín či architektury. Článek ukazuje, že logaritmická spirála popisovaná jako hladká křivka s exponenciálně rostoucím poloměrem může být transformována do řady...
We introduce an infinite-dimensional version of the Amann-Conley-Zehnder reduction for a class of boundary problems related to nonlinear perturbed elliptic operators with symmetric derivative. We construct global generating functions with finite auxiliary parameters, describing the solutions as critical points in a finite-dimensional space.