Inégalités isosystoliques conformes
We establish Brunn-Minkowski type inequalities for radial Blaschke-Minkowski homomorphisms, which in special cases yield some new results for intersection bodies. Moreover, we obtain two monotonicity inequalities for radial Blaschke-Minkowski homomorphisms.
We show how an operation of inf-convolution can be used to approximate convex functions with C1 smooth convex functions on Riemannian manifolds with nonpositive curvature (in a manner that not only is explicit but also preserves some other properties of the original functions, such as ordering, symmetries, infima and sets of minimizers), and we give some applications.
In this paper, we construct a hyperkähler structure on the complexification of any Hermitian symmetric affine coadjoint orbit of a semi-simple -group of compact type, which is compatible with the complex symplectic form of Kirillov-Kostant-Souriau and restricts to the Kähler structure of . By a relevant identification of the complex orbit with the cotangent space of induced by Mostow’s decomposition theorem, this leads to the existence of a hyperkähler structure on compatible with...
We show that infinitesimal automorphisms and infinitesimal deformations of parabolic geometries can be nicely described in terms of the twisted de Rham sequence associated to a certain linear connection on the adjoint tractor bundle. For regular normal geometries, this description can be related to the underlying geometric structure using the machinery of BGG sequences. In the locally flat case, this leads to a deformation complex, which generalizes the well known complex for locally conformally...
In this work infinitesimal bending of a subspace of a generalized Riemannian space (with non-symmetric basic tensor) are studied. Based on non-symmetry of the connection, it is possible to define four kinds of covariant derivative of a tensor. We have obtained derivation formulas of the infinitesimal bending field and integrability conditions of these formulas (equations).
In this note it is shown that almost Hermitian locally homogeneous manifolds are determined, up to local isometries, by an integer , the covariant derivatives of the curvature tensor up to order and the covariant derivatives of the complex structure up to the second order calculated at some point. An example of a Hermitian locally homogeneous manifold which is not locally isometric to any Hermitian globally homogeneous manifold is given.