On the Differentiability of the Coordinate Functions of Póyla's Space-Filling Curve.
We give a lower bound for the bottom of the differential form spectrum on hyperbolic manifolds, generalizing thus a well-known result due to Sullivan and Corlette in the function case. Our method is based on the study of the resolvent associated with the Hodge-de Rham laplacian and leads to applications for the (co)homology and topology of certain classes of hyperbolic manifolds.
We establish an inversion formula for the M. M. Djrbashian A. H. Karapetyan integral transform (cf. [6]) on the Siegel domain , . We build a family of Kähler metrics of constant holomorphic curvature whose potentials are the -Bergman kernels, α > -1, (in the sense of Z. Pasternak-Winiarski [20] of . We build an anti-holomorphic embedding of in the complex projective Hilbert space and study (in connection with work by A. Odzijewicz [18] the corresponding transition probability amplitudes....
In this paper we show that a 1-convex (i.e., strongly pseudoconvex) manifold , with 1- dimensional exceptional set and finitely generated second homology group , is embeddable in if and only if is Kähler, and this case occurs only when does not contain any effective curve which is a boundary.
We consider the energy of a unit vector field defined on a compact Riemannian manifold M except at finitely many points. We obtain an estimate of the energy from below which appears to be sharp when M is a sphere of dimension >3. In this case, the minimum of energy is attained if and only if the vector field is totally geodesic with two singularities situated at two antipodal points (at the 'south and north pole').