On the multiplicity of eigenvalues of conformally covariant operators
Let be a compact Riemannian manifold and an elliptic, formally self-adjoint, conformally covariant operator of order acting on smooth sections of a bundle over . We prove that if has no rigid eigenspaces (see Definition 2.2), the set of functions for which has only simple non-zero eigenvalues is a residual set in . As a consequence we prove that if has no rigid eigenspaces for a dense set of metrics, then all non-zero eigenvalues are simple for a residual set of metrics in the -topology....