Displaying 121 – 140 of 763

Showing per page

Classification analytique de structures de Poisson

Philipp Lohrmann (2009)

Bulletin de la Société Mathématique de France

Notre étude porte sur une catégorie de structures de Poisson singulières holomorphes au voisinage de 0 n et admettant une forme normale formelle polynomiale i.e. un nombre fini d’invariants formels. Les séries normalisantes sont divergentes en général. On montre l’existence de transformations normalisantes holomorphes sur des domaines sectoriels de la forme a < arg x R < b , où x R est un monôme associé au problème. Il suit une classification analytique.

Classification of (1,1) tensor fields and bihamiltonian structures

Francisco Turiel (1996)

Banach Center Publications

Consider a (1,1) tensor field J, defined on a real or complex m-dimensional manifold M, whose Nijenhuis torsion vanishes. Suppose that for each point p ∈ M there exist functions f 1 , . . . , f m , defined around p, such that ( d f 1 . . . d f m ) ( p ) 0 and d ( d f j ( J ( ) ) ) ( p ) = 0 , j = 1,...,m. Then there exists a dense open set such that we can find coordinates, around each of its points, on which J is written with affine coefficients. This result is obtained by associating to J a bihamiltonian structure on T*M.

Classification of 4 -dimensional homogeneous weakly Einstein manifolds

Teresa Arias-Marco, Oldřich Kowalski (2015)

Czechoslovak Mathematical Journal

Y. Euh, J. Park and K. Sekigawa were the first authors who defined the concept of a weakly Einstein Riemannian manifold as a modification of that of an Einstein Riemannian manifold. The defining formula is expressed in terms of the Riemannian scalar invariants of degree two. This concept was inspired by that of a super-Einstein manifold introduced earlier by A. Gray and T. J. Willmore in the context of mean-value theorems in Riemannian geometry. The dimension 4 is the most interesting case, where...

Classification of 4-dimensional homogeneous D'Atri spaces

Teresa Arias-Marco, Oldřich Kowalski (2008)

Czechoslovak Mathematical Journal

The property of being a D’Atri space (i.e., a space with volume-preserving symmetries) is equivalent to the infinite number of curvature identities called the odd Ledger conditions. In particular, a Riemannian manifold ( M , g ) satisfying the first odd Ledger condition is said to be of type 𝒜 . The classification of all 3-dimensional D’Atri spaces is well-known. All of them are locally naturally reductive. The first attempts to classify all 4-dimensional homogeneous D’Atri spaces were done in the papers...

Currently displaying 121 – 140 of 763