Displaying 121 – 140 of 1190

Showing per page

On a theorem of Chekanov

Emmanuel Ferrand (1997)

Banach Center Publications

A proof of the Chekanov theorem is discussed from a geometric point of view. Similar results in the context of projectivized cotangent bundles are proved. Some applications are given.

On a theorem of Fermi

Viktor V. Slavskii (1996)

Commentationes Mathematicae Universitatis Carolinae

Conformally flat metric g ¯ is said to be Ricci superosculating with g at the point x 0 if g i j ( x 0 ) = g ¯ i j ( x 0 ) , Γ i j k ( x 0 ) = Γ ¯ i j k ( x 0 ) , R i j k ( x 0 ) = R ¯ i j k ( x 0 ) , where R i j is the Ricci tensor. In this paper the following theorem is proved: If γ is a smooth curve of the Riemannian manifold M (without self-crossing(, then there is a neighbourhood of γ and a conformally flat metric g ¯ which is the Ricci superosculating with g along the curve γ .

On a variational theory of light rays on Lorentzian manifolds

Fabio Giannoni, Antonio Masiello (1995)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this Note, by using a generalization of the classical Fermat principle, we prove the existence and multiplicity of lightlike geodesics joining a point with a timelike curve on a class of Lorentzian manifolds, satisfying a suitable compactness assumption, which is weaker than the globally hyperbolicity.

On a volume element of a Hitchin component

Yaşar Sözen (2012)

Fundamenta Mathematicae

Let Σ be a closed oriented Riemann surface of genus at least 2. By using symplectic chain complex, we construct a volume element for a Hitchin component of Hom(π₁(Σ),PSLₙ(ℝ))/PSLₙ(ℝ) for n > 2.

On admissible groups of diffeomorphisms

Rybicki, Tomasz (1997)

Proceedings of the 16th Winter School "Geometry and Physics"

The phenomenon of determining a geometric structure on a manifold by the group of its automorphisms is a modern analogue of the basic ideas of the Erlangen Program of F. Klein. The author calls such diffeomorphism groups admissible and he describes them by imposing some axioms. The main result is the followingTheorem. Let ( M i , α i ) , i = 1 , 2 , be a geometric structure such that its group of automorphisms G ( M i , α i ) satisfies either axioms 1, 2, 3 and 4, or axioms 1, 2, 3’, 4, 5, 6 and 7, and M i is compact, or axioms 1, 2,...

Currently displaying 121 – 140 of 1190