The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 2

Displaying 21 – 25 of 25

Showing per page

Homogeneous geodesics in a three-dimensional Lie group

Rosa Anna Marinosci (2002)

Commentationes Mathematicae Universitatis Carolinae

O. Kowalski and J. Szenthe [KS] proved that every homogeneous Riemannian manifold admits at least one homogeneous geodesic, i.eȯne geodesic which is an orbit of a one-parameter group of isometries. In [KNV] the related two problems were studied and a negative answer was given to both ones: (1) Let M = K / H be a homogeneous Riemannian manifold where K is the largest connected group of isometries and dim M 3 . Does M always admit more than one homogeneous geodesic? (2) Suppose that M = K / H admits m = dim M linearly independent...

Currently displaying 21 – 25 of 25

Previous Page 2