The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper we study the topological and metric rigidity of hypersurfaces in , the -dimensional hyperbolic space of sectional curvature . We find conditions to ensure a complete connected oriented hypersurface in to be diffeomorphic to a Euclidean sphere. We also give sufficient conditions for a complete connected oriented closed hypersurface with constant norm of the second fundamental form to be totally umbilic.
This paper is a survey of results on topological structures and curvature structures of complete submanifolds in a Euclidean space.
We prove some pinching theorems with respect to the scalar curvature of 4-dimensional conformally flat (concircularly flat, quasi-conformally flat) totally real minimal submanifolds in QP⁴(c).
We introduce the notions of (extrinsic) locally transversally symmetric immersions and submanifolds in a Riemannian manifold equipped with a unit Killing vector field as analogues of those of (extrinsic) locally symmetric immersions and submanifolds. We treat their geometric properties, derive several characterizations and give a list of examples.
Currently displaying 41 –
57 of
57