Further Relationships between Decomposition Theories and Topologies
A topological space is KC when every compact set is closed and SC when every convergent sequence together with its limit is closed. We present a complete description of KC-closed, SC-closed and SC minimal spaces. We also discuss the behaviour of the finite derived set property in these classes.
We use a set theoretic approach to consensus by viewing an object as a set of smaller pieces called “bricks”. A consensus function is neutral if there exists a family D of sets such that a brick s is in the output of a profile if and only if the set of positions with objects that contain s belongs to D. We give sufficient set theoretic conditions for D to be a lattice filter and, in the case of a finite lattice, these conditions turn out to be necessary. Ourfinal result, which involves a finite...
In the paper, three different ways of constructing distances between vaguely described objects are shown: a generalization of the classic distance between subsets of a metric space, distance between membership functions of fuzzy sets and a fuzzy metric introduced by generalizing a metric space to fuzzy-metric one. Fuzzy metric spaces defined by Zadeh’s extension principle, particularly to are dealt with in detail.