The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 868

Showing per page

C 1 -minimal subsets of the circle

Dusa McDuff (1981)

Annales de l'institut Fourier

Necessary conditions are found for a Cantor subset of the circle to be minimal for some C 1 -diffeomorphism. These conditions are not satisfied by the usual ternary Cantor set.

C p ( I ) is not subsequential

Viacheslav I. Malykhin (1999)

Commentationes Mathematicae Universitatis Carolinae

If a separable dense in itself metric space is not a union of countably many nowhere dense subsets, then its C p -space is not subsequential.

C * -points vs P -points and P -points

Jorge Martinez, Warren Wm. McGovern (2022)

Commentationes Mathematicae Universitatis Carolinae

In a Tychonoff space X , the point p X is called a C * -point if every real-valued continuous function on C { p } can be extended continuously to p . Every point in an extremally disconnected space is a C * -point. A classic example is the space 𝐖 * = ω 1 + 1 consisting of the countable ordinals together with ω 1 . The point ω 1 is known to be a C * -point as well as a P -point. We supply a characterization of C * -points in totally ordered spaces. The remainder of our time is aimed at studying when a point in a product space is a C * -point....

C ( X ) can sometimes determine X without X being realcompact

Melvin Henriksen, Biswajit Mitra (2005)

Commentationes Mathematicae Universitatis Carolinae

As usual C ( X ) will denote the ring of real-valued continuous functions on a Tychonoff space X . It is well-known that if X and Y are realcompact spaces such that C ( X ) and C ( Y ) are isomorphic, then X and Y are homeomorphic; that is C ( X ) determines X . The restriction to realcompact spaces stems from the fact that C ( X ) and C ( υ X ) are isomorphic, where υ X is the (Hewitt) realcompactification of X . In this note, a class of locally compact spaces X that includes properly the class of locally compact realcompact spaces is exhibited...

Calibres, compacta and diagonals

Paul Gartside, Jeremiah Morgan (2016)

Fundamenta Mathematicae

For a space Z let 𝒦(Z) denote the partially ordered set of all compact subspaces of Z under set inclusion. If X is a compact space, Δ is the diagonal in X², and 𝒦(X²∖Δ) has calibre (ω₁,ω), then X is metrizable. There is a compact space X such that X²∖Δ has relative calibre (ω₁,ω) in 𝒦(X²∖Δ), but which is not metrizable. Questions of Cascales et al. (2011) concerning order constraints on 𝒦(A) for every subspace of a space X are answered.

Can we assign the Borel hulls in a monotone way?

Márton Elekes, András Máthé (2009)

Fundamenta Mathematicae

A hull of A ⊆ [0,1] is a set H containing A such that λ*(H) = λ*(A). We investigate all four versions of the following problem. Does there exist a monotone (with respect to inclusion) map that assigns a Borel/ G δ hull to every negligible/measurable subset of [0,1]? Three versions turn out to be independent of ZFC, while in the fourth case we only prove that the nonexistence of a monotone G δ hull operation for all measurable sets is consistent. It remains open whether existence here is also consistent....

Currently displaying 1 – 20 of 868

Page 1 Next