The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 421 – 440 of 868

Showing per page

Compactifications of ℕ and Polishable subgroups of S

Todor Tsankov (2006)

Fundamenta Mathematicae

We study homeomorphism groups of metrizable compactifications of ℕ. All of those groups can be represented as almost zero-dimensional Polishable subgroups of the group S . As a corollary, we show that all Polish groups are continuous homomorphic images of almost zero-dimensional Polishable subgroups of S . We prove a sufficient condition for these groups to be one-dimensional and also study their descriptive complexity. In the last section we associate with every Polishable ideal on ℕ a certain Polishable...

Compactness and convergence of set-valued measures

Kenny Koffi Siggini (2009)

Colloquium Mathematicae

We prove criteria for relative compactness in the space of set-valued measures whose values are compact convex sets in a Banach space, and we generalize to set-valued measures the famous theorem of Dieudonné on convergence of real non-negative regular measures.

Compactness and countable compactness in weak topologies

W. Kirk (1995)

Studia Mathematica

A bounded closed convex set K in a Banach space X is said to have quasi-normal structure if each bounded closed convex subset H of K for which diam(H) > 0 contains a point u for which ∥u-x∥ < diam(H) for each x ∈ H. It is shown that if the convex sets on the unit sphere in X satisfy this condition (which is much weaker than the assumption that convex sets on the unit sphere are separable), then relative to various weak topologies, the unit ball in X is compact whenever it is countably compact....

Currently displaying 421 – 440 of 868