Displaying 721 – 740 of 1151

Showing per page

A Tikhonov-type theorem for abstract parabolic differential inclusions in Banach spaces

Anastasie Gudovich, Mikhail Kamenski, Paolo Nistri (2001)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

We consider a class of singularly perturbed systems of semilinear parabolic differential inclusions in infinite dimensional spaces. For such a class we prove a Tikhonov-type theorem for a suitably defined subset of the set of all solutions for ε ≥ 0, where ε is the perturbation parameter. Specifically, assuming the existence of a Lipschitz selector of the involved multivalued maps we can define a nonempty subset Z L ( ε ) of the solution set of the singularly perturbed system. This subset is the set of...

A topological application of flat morasses

R. W. Knight (2007)

Fundamenta Mathematicae

We define combinatorial structures which we refer to as flat morasses, and use them to construct a Lindelöf space with points G δ of cardinality ω , consistent with GCH. The construction reveals, it is hoped, that flat morasses are a tool worth adding to the kit of any user of set theory.

A topological dichotomy with applications to complex analysis

Iosif Pinelis (2015)

Colloquium Mathematicae

Let X be a compact topological space, and let D be a subset of X. Let Y be a Hausdorff topological space. Let f be a continuous map of the closure of D to Y such that f(D) is open. Let E be any connected subset of the complement (to Y) of the image f(∂D) of the boundary ∂D of D. Then f(D) either contains E or is contained in the complement of E. Applications of this dichotomy principle are given, in particular for holomorphic maps, including maximum and minimum modulus principles,...

Currently displaying 721 – 740 of 1151