Displaying 1081 – 1100 of 1528

Showing per page

On the convergence of the Ishikawa iterates to a common fixed point of two mappings

Ljubomir B. Ćirić, Jeong Sheok Ume, M. S. Khan (2003)

Archivum Mathematicum

Let C be a convex subset of a complete convex metric space X , and S and T be two selfmappings on C . In this paper it is shown that if the sequence of Ishikawa iterations associated with S and T converges, then its limit point is the common fixed point of S and T . This result extends and generalizes the corresponding results of Naimpally and Singh [6], Rhoades [7] and Hicks and Kubicek [3].

On the Converse of Caristi's Fixed Point Theorem

Szymon Głąb (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

Let X be a nonempty set of cardinality at most 2 and T be a selfmap of X. Our main theorem says that if each periodic point of T is a fixed point under T, and T has a fixed point, then there exist a metric d on X and a lower semicontinuous map ϕ :X→ ℝ ₊ such that d(x,Tx) ≤ ϕ(x) - ϕ(Tx) for all x∈ X, and (X,d) is separable. Assuming CH (the Continuum Hypothesis), we deduce that (X,d) is compact.

On the density and net weight of regular spaces

Armando Romero Morales (2007)

Colloquium Mathematicae

We use the cardinal functions ac and lc, due to Fedeli, to establish bounds on the density and net weight of regular spaces which improve some well known bounds. In particular, we use the language of elementary submodels to establish that d ( X ) π χ ( X ) a c ( X ) for every regular space X. This generalizes the following result due to Shapirovskiĭ: d ( X ) π χ ( X ) c ( X ) for every regular space X.

On the density of the hyperspace of a metric space

Alberto Barbati, Camillo Costantini (1997)

Commentationes Mathematicae Universitatis Carolinae

We calculate the density of the hyperspace of a metric space, endowed with the Hausdorff or the locally finite topology. To this end, we introduce suitable generalizations of the notions of totally bounded and compact metric space.

On the difference property of Borel measurable functions

Hiroshi Fujita, Tamás Mátrai (2010)

Fundamenta Mathematicae

If an atomlessly measurable cardinal exists, then the class of Lebesgue measurable functions, the class of Borel functions, and the Baire classes of all orders have the difference property. This gives a consistent positive answer to Laczkovich's Problem 2 [Acta Math. Acad. Sci. Hungar. 35 (1980)]. We also give a complete positive answer to Laczkovich's Problem 3 concerning Borel functions with Baire-α differences.

Currently displaying 1081 – 1100 of 1528