Previous Page 77

Displaying 1521 – 1528 of 1528

Showing per page

Ordinal products of topological spaces

Vitalij Chatyrko (1994)

Fundamenta Mathematicae

The notion of the ordinal product of a transfinite sequence of topological spaces which is an extension of the finite product operation is introduced. The dimensions of finite and infinite ordinal products are estimated. In particular, the dimensions of ordinary products of Smirnov's [S] and Henderson's [He1] compacta are calculated.

Ordinal remainders of classical ψ-spaces

Alan Dow, Jerry E. Vaughan (2012)

Fundamenta Mathematicae

Let ω denote the set of natural numbers. We prove: for every mod-finite ascending chain T α : α < λ of infinite subsets of ω, there exists [ ω ] ω , an infinite maximal almost disjoint family (MADF) of infinite subsets of the natural numbers, such that the Stone-Čech remainder βψ∖ψ of the associated ψ-space, ψ = ψ(ω,ℳ ), is homeomorphic to λ + 1 with the order topology. We also prove that for every λ < ⁺, where is the tower number, there exists a mod-finite ascending chain T α : α < λ , hence a ψ-space with Stone-Čech remainder...

Ordinals in topological groups

Raushan Z. Buzyakova (2007)

Fundamenta Mathematicae

We show that if an uncountable regular cardinal τ and τ + 1 embed in a topological group G as closed subspaces then G is not normal. We also prove that an uncountable regular cardinal cannot be embedded in a torsion free Abelian group that is hereditarily normal. These results are corollaries to our main results about ordinals in topological groups. To state the main results, let τ be an uncountable regular cardinal and G a T₁ topological group. We prove, among others, the following statements:...

Currently displaying 1521 – 1528 of 1528

Previous Page 77