The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 341 –
360 of
388
We study those compactifications of a space such that every autohomeomorphism of the space can be continuously extended over the compactification. These are called H-compactifications. Van Douwen proved that there are exactly three H-compactifications of the real line. We prove that there exist only two H-compactifications of Euclidean spaces of higher dimension. Next we show that there are 26 H-compactifications of a countable sum of real lines and 11 H-compactifications of a countable sum of Euclidean...
This paper considers totally bounded quasi-uniformities and quasi-proximities for frames and shows that for a given quasi-proximity on a frame there is a totally bounded quasi-uniformity on that is the coarsest quasi-uniformity, and the only totally bounded quasi-uniformity, that determines . The constructions due to B. Banaschewski and A. Pultr of the Cauchy spectrum and the compactification of a uniform frame are meaningful for quasi-uniform frames. If is a totally bounded quasi-uniformity...
Totally nonremote points in are constructed. The number of these points is .
Let be a group, be the Stone-Čech compactification of endowed with the structure of a right topological semigroup and . Given any subset of and , we define the -companion of , and characterize the subsets with finite and discrete ultracompanions.
Let be a vector sublattice over which separates points from closed sets of . The compactification obtained by embedding in a real cube via the diagonal map, is different, in general, from the Wallman compactification . In this paper, it is shown that there exists a lattice containing such that . In particular this implies that . Conditions in order to be are given. Finally we prove that, if is a compactification of such that is -dimensional, then there is an algebra such...
In this paper we give a characterization of a separable metrizable space having a metrizable S-weakly infinite-dimensional compactification in terms of a special metric. Moreover, we give two characterizations of a separable metrizable space having a metrizable countable-dimensional compactification.
Currently displaying 341 –
360 of
388