The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 45

Showing per page

C(K) spaces which cannot be uniformly embedded into c₀(Γ)

Jan Pelant, Petr Holický, Ondřej F. K. Kalenda (2006)

Fundamenta Mathematicae

We give two examples of scattered compact spaces K such that C(K) is not uniformly homeomorphic to any subset of c₀(Γ) for any set Γ. The first one is [0,ω₁] and hence it has the smallest possible cardinality, the other one has the smallest possible height ω₀ + 1.

Coarse structures and group actions

N. Brodskiy, J. Dydak, A. Mitra (2008)

Colloquium Mathematicae

The main results of the paper are: Proposition 0.1. A group G acting coarsely on a coarse space (X,𝓒) induces a coarse equivalence g ↦ g·x₀ from G to X for any x₀ ∈ X. Theorem 0.2. Two coarse structures 𝓒₁ and 𝓒₂ on the same set X are equivalent if the following conditions are satisfied: (1) Bounded sets in 𝓒₁ are identical with bounded sets in 𝓒₂. (2) There is a coarse action ϕ₁ of a group G₁ on (X,𝓒₁) and a coarse action ϕ₂ of a...

Currently displaying 1 – 20 of 45

Page 1 Next