The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Given an ordered metric space (in particular, a Banach lattice) E, the generalized Helly space H(E) is the set of all increasing functions from the interval [0,1] to E considered with the topology of pointwise convergence, and E is said to have property (λ) if each of these functions has only countably many points of discontinuity. The main objective of the paper is to study those ordered metric spaces C(K,E), where K is a compact space, that have property (λ). In doing so, the guiding idea comes...
A space is truly weakly pseudocompact if is either weakly pseudocompact or Lindelöf locally compact. We prove that if is a generalized linearly ordered space, and either (i) each proper open interval in is truly weakly pseudocompact, or (ii) is paracompact and each point of has a truly weakly pseudocompact neighborhood, then is truly weakly pseudocompact. We also answer a question about weakly pseudocompact spaces posed by F. Eckertson in [Eck].
Currently displaying 1 –
4 of
4