The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 11 of 11

Showing per page

Modifications of the double arrow space and related Banach spaces C(K)

Witold Marciszewski (2008)

Studia Mathematica

We consider the class of compact spaces K A which are modifications of the well known double arrow space. The space K A is obtained from a closed subset K of the unit interval [0,1] by “splitting” points from a subset A ⊂ K. The class of all such spaces coincides with the class of separable linearly ordered compact spaces. We prove some results on the topological classification of K A spaces and on the isomorphic classification of the Banach spaces C ( K A ) .

Monotone extenders for bounded c-valued functions

Kaori Yamazaki (2010)

Studia Mathematica

Let c be the Banach space consisting of all convergent sequences of reals with the sup-norm, C ( A , c ) the set of all bounded continuous functions f: A → c, and C A ( X , c ) the set of all functions f: X → c which are continuous at each point of A ⊂ X. We show that a Tikhonov subspace A of a topological space X is strong Choquet in X if there exists a monotone extender u : C ( A , c ) C A ( X , c ) . This shows that the monotone extension property for bounded c-valued functions can fail in GO-spaces, which provides a negative answer to a question...

Monotone meta-Lindelöf spaces

Yin-Zhu Gao, Wei-Xue Shi (2009)

Czechoslovak Mathematical Journal

In this paper, we study the monotone meta-Lindelöf property. Relationships between monotone meta-Lindelöf spaces and other spaces are investigated. Behaviors of monotone meta-Lindelöf G O -spaces in their linearly ordered extensions are revealed.

More on ordinals in topological groups

Aleksander V. Arhangel'skii, Raushan Z. Buzyakova (2008)

Commentationes Mathematicae Universitatis Carolinae

Let τ be an uncountable regular cardinal and G a T 1 topological group. We prove the following statements: (1) If τ is homeomorphic to a closed subspace of G , G is Abelian, and the order of every non-neutral element of G is greater than 5 then τ × τ embeds in G as a closed subspace. (2) If G is Abelian, algebraically generated by τ G , and the order of every element does not exceed 3 then τ × τ is not embeddable in G . (3) There exists an Abelian topological group H such that ω 1 is homeomorphic to a closed subspace...

Currently displaying 1 – 11 of 11

Page 1