The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 14 of 14

Showing per page

F σ -absorbing sequences in hyperspaces of subcontinua

Helma Gladdines (1993)

Commentationes Mathematicae Universitatis Carolinae

Let 𝒟 denote a true dimension function, i.e., a dimension function such that 𝒟 ( n ) = n for all n . For a space X , we denote the hyperspace consisting of all compact connected, non-empty subsets by C ( X ) . If X is a countable infinite product of non-degenerate Peano continua, then the sequence ( 𝒟 n ( C ( X ) ) ) n = 2 is F σ -absorbing in C ( X ) . As a consequence, there is a homeomorphism h : C ( X ) Q such that for all n , h [ { A C ( X ) : 𝒟 ( A ) n + 1 } ] = B n × Q × Q × , where B denotes the pseudo boundary of the Hilbert cube Q . It follows that if X is a countable infinite product of non-degenerate...

Factorizations of set-valued mappings with separable range

Valentin G. Gutev (1996)

Commentationes Mathematicae Universitatis Carolinae

Right factorizations for a class of l.s.cṁappings with separable metrizable range are constructed. Besides in the selection and dimension theories, these l.s.cḟactorizations are also successful in solving the problem of factorizing a class of u.s.cṁappings.

Finite-dimensional maps and dendrites with dense sets of end points

Hisao Kato, Eiichi Matsuhashi (2006)

Colloquium Mathematicae

The first author has recently proved that if f: X → Y is a k-dimensional map between compacta and Y is p-dimensional (0 ≤ k, p < ∞), then for each 0 ≤ i ≤ p + k, the set of maps g in the space C ( X , I p + 2 k + 1 - i ) such that the diagonal product f × g : X Y × I p + 2 k + 1 - i is an (i+1)-to-1 map is a dense G δ -subset of C ( X , I p + 2 k + 1 - i ) . In this paper, we prove that if f: X → Y is as above and D j (j = 1,..., k) are superdendrites, then the set of maps h in C ( X , j = 1 k D j × I p + 1 - i ) such that f × h : X Y × ( j = 1 k D j × I p + 1 - i ) is (i+1)-to-1 is a dense G δ -subset of C ( X , j = 1 k D j × I p + 1 - i ) for each 0 ≤ i ≤ p.

Finite-to-one maps and dimension

Jerzy Krzempek (2004)

Fundamenta Mathematicae

It is shown that for every at most k-to-one closed continuous map f from a non-empty n-dimensional metric space X, there exists a closed continuous map g from a zero-dimensional metric space onto X such that the composition f∘g is an at most (n+k)-to-one map. This implies that f is a composition of n+k-1 simple ( = at most two-to-one) closed continuous maps. Stronger conclusions are obtained for maps from Anderson-Choquet spaces and ones that satisfy W. Hurewicz's condition (α). The main tool is...

Fully closed maps and non-metrizable higher-dimensional Anderson-Choquet continua

Jerzy Krzempek (2010)

Colloquium Mathematicae

Fedorchuk's fully closed (continuous) maps and resolutions are applied in constructions of non-metrizable higher-dimensional analogues of Anderson, Choquet, and Cook's rigid continua. Certain theorems on dimension-lowering maps are proved for inductive dimensions and fully closed maps from spaces that need not be hereditarily normal, and some of the examples of continua we construct have non-coinciding dimensions.

Currently displaying 1 – 14 of 14

Page 1