Algorithmic unsolvability of the triviality problem for multidimensional knots.
M. Bestvina has shown that for any given torsion-free CAT(0) group G, all of its boundaries are shape equivalent. He then posed the question of whether they satisfy the stronger condition of being cell-like equivalent. In this article we prove that the answer is "Yes" in the situation where the group in question splits as a direct product with infinite factors. We accomplish this by proving an interesting theorem in shape theory.
We define a distance between submanifolds of a riemannian manifold and show that, if a compact submanifold is not moved too much under the isometric action of a compact group , there is a -invariant submanifold -close to . The proof involves a procedure of averaging nearby submanifolds of riemannian manifolds in a symmetric way. The procedure combines averaging techniques of Cartan, Grove/Karcher, and de la Harpe/Karoubi with Whitney’s idea of realizing submanifolds as zeros of sections...
The main issue of this paper is an attempt to find a decomposition theorem for infra-nilmanifolds in the same spirit as a result of A. Vasquez for flat Riemannian manifolds. That is: we look for infra-nilmanifolds with prime order holonomy which can be obtained as a fiber space with a non-trivial nilmanifold as fiber and an infra-nilmanifold as its base. In this perspective, we prove the following algebraic result: if E is an almost-Bieberbach group with prime order holonomy,...
We show that the amalgamated free products of two free groups over a cyclic subgroup admit amenable, faithful and transitive actions on infinite countable sets. This work generalizes the results on such actions for doubles of free group on two generators.