The search session has expired. Please query the service again.
Let N be a complete hyperbolic 3-manifold that is an algebraic limit of geometrically finite hyperbolic 3-manifolds. We show N is homeomorphic to the interior of a compact 3-manifold, or tame, if one of the following conditions holds: 1. N has non-empty conformal boundary, 2. N is not homotopy equivalent to a compression body, or 3. N is a strong limit of geometrically finite manifolds. The first case proves Ahlfors’ measure conjecture for kleinian groups in the closure of the geometrically finite...
We study when an essential tangle decomposition of a satellite knot gives an essential tangle decomposition of the companion knot, that is, when the decomposing sphere can be isotoped to intersect the knotted solid torus identified with the pattern in meridian disks.
Let be a compact oriented 3-manifold whose boundary contains a single torus and let be a taut foliation on whose restriction to has a Reeb component. The main technical result of the paper, asserts that if is obtained by Dehn filling along any curve not parallel to the Reeb component, then has a taut foliation.
We show that any transversally complete Riemannian foliation of dimension one on any possibly non-compact manifold is tense; namely, admits a Riemannian metric such that the mean curvature form of is basic. This is a partial generalization of a result of Domínguez, which says that any Riemannian foliation on any compact manifold is tense. Our proof is based on some results of Molino and Sergiescu, and it is simpler than the original proof by Domínguez. As an application, we generalize some...
Using fiberings, we determine the cup-length and the Lyusternik-Shnirel’man category for some infinite families of real flag manifolds , q ≥ 3. We also give, or describe ways to obtain, interesting estimates for the cup-length of any , q ≥ 3. To present another approach (combining well with the “method of fiberings”), we generalize to the real flag manifolds Stong’s approach used for calculations in the ℤ₂-cohomology algebra of the Grassmann manifolds.
We prove that the first complex homology of the Johnson subgroup of the Torelli group is a non-trivial, unipotent -module for all and give an explicit presentation of it as a -module when . We do this by proving that, for a finitely generated group satisfying an assumption close to formality, the triviality of the restricted characteristic variety implies that the first homology of its Johnson kernel is a nilpotent module over the corresponding Laurent polynomial ring, isomorphic to the...
Currently displaying 1 –
20 of
558