Displaying 321 – 340 of 5443

Showing per page

A variational analysis of a gauged nonlinear Schrödinger equation

Alessio Pomponio, David Ruiz (2015)

Journal of the European Mathematical Society

This paper is motivated by a gauged Schrödinger equation in dimension 2 including the so-called Chern-Simons term. The study of radial stationary states leads to the nonlocal problem: - Δ u ( x ) + ω + h 2 ( | x | ) | x | 2 + | x | + h ( s ) s u 2 ( s ) d s u ( x ) = | u ( x ) | p - 1 u ( x ) , where h ( r ) = 1 2 0 r s u 2 ( s ) d s . This problem is the Euler-Lagrange equation of a certain energy functional. In this paper the study of the global behavior of such functional is completed. We show that for p ( 1 , 3 ) , the functional may be bounded from below or not, depending on ω . Quite surprisingly, the threshold value for ω is explicit. From...

A Weighted Eigenvalue Problems Driven by both p ( · ) -Harmonic and p ( · ) -Biharmonic Operators

Mohamed Laghzal, Abdelouahed El Khalil, Abdelfattah Touzani (2021)

Communications in Mathematics

The existence of at least one non-decreasing sequence of positive eigenvalues for the problem driven by both p ( · ) -Harmonic and p ( · ) -biharmonic operators Δ p ( x ) 2 u - Δ p ( x ) u = λ w ( x ) | u | q ( x ) - 2 u in Ω , u W 2 , p ( · ) ( Ω ) W 0 1 , p ( · ) ( Ω ) , is proved by applying a local minimization and the theory of the generalized Lebesgue-Sobolev spaces L p ( · ) ( Ω ) and W m , p ( · ) ( Ω ) .

Abbildungen harmonischer Raüme mit Anwendung auf die Laplace und Wärmeleitungsgleichung

Wolfhard Hansen (1971)

Annales de l'institut Fourier

This paper is devoted to a study of harmonic mappings φ of a harmonic space E ˜ on a harmonic space E which are related to a family of harmonic mappings of E ˜ into E ˜ . In this way balayage in E may be reduced to balayage in E . In particular, a subset A of E is polar if and only if φ - 1 ( A ) is polar. Similar result for thinness. These considerations are applied to the heat equation and the Laplace equation.

Abelian analytic torsion and symplectic volume

B.D.K. McLellan (2015)

Archivum Mathematicum

This article studies the abelian analytic torsion on a closed, oriented, Sasakian three-manifold and identifies this quantity as a specific multiple of the natural unit symplectic volume form on the moduli space of flat abelian connections. This identification computes the analytic torsion explicitly in terms of Seifert data.

About boundary terms in higher order theories

Lorenzo Fatibene, Mauro Francaviglia, S. Mercadante (2011)

Communications in Mathematics

It is shown that when in a higher order variational principle one fixes fields at the boundary leaving the field derivatives unconstrained, then the variational principle (in particular the solution space) is not invariant with respect to the addition of boundary terms to the action, as it happens instead when the correct procedure is applied. Examples are considered to show how leaving derivatives of fields unconstrained affects the physical interpretation of the model. This is justified in particular...

Currently displaying 321 – 340 of 5443