On the existence of Jenkins-Strebel differentials using harmonic maps from surfaces to graphs.
The existence of positive solutions for a nonlocal boundary-value problem with vector-valued response is investigated. We develop duality and variational principles for this problem. Our variational approach enables us to approximate solutions and give a measure of a duality gap between the primal and dual functional for minimizing sequences.
In questa Nota si continua la discussione iniziata in [4] dell'esistenza di soluzioni ottimali per problemi di ottimo controllo in . Si definiscono problemi generalizzati, e si ottengono estensioni di risultati già presentati in [4]. Si dimostrano anche varie relazioni tra le soluzioni ottimali dei problemi generalizzati e i problemi originali e non convessi di ottimo controllo. Alla fine si considerano problemi lineari nelle variabili di stato anche nel caso di costi funzionali a valori vettoriali...
We classify all bundle functors admitting natural operators transforming connections on a fibered manifold into connections on . Then we solve a similar problem for natural operators transforming connections on into connections on .
We show that the number of derivatives of a non negative 2-order symbol needed to establish the classical Fefferman-Phong inequality is bounded by improving thus the bound obtained recently by N. Lerner and Y. Morimoto. In the case of symbols of type , we show that this number is bounded by ; more precisely, for a non negative symbol , the Fefferman-Phong inequality holds if are bounded for, roughly, . To obtain such results and others, we first prove an abstract result which says that...
We present a complete description of all fiber product preserving gauge bundle functors F on the category of vector bundles with m-dimensional bases and vector bundle maps with local diffeomorphisms as base maps. Some corollaries of this result are presented.
Hermann and Thurston proved that the group of diffeomorphisms with compact support of a smooth manifold M which are isotopic to the identity is a perfect group. We consider the case where M has a geometric structure. In this paper we shall survey on the recent results of the first homology of the diffeomorphism groups which preserve a smooth G-action or a foliated structure on M. We also work in Lipschitz category.
Author’s abstract: “We introduce the concept of the flux homomorphism for regular Poisson manifolds. First we establish a one-to-one correspondence between Poisson diffeomorphisms close to and closed foliated 1-forms close to 0. This allows to show that the group of Poisson automorphisms is locally contractible and to define the flux locally. Then, by means of the foliated cohomology, we extend this local homomorphism to a global one”.