The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 381 –
400 of
622
We describe the fundamental properties of the infinitesimal actions related with functorial prolongations of principal and associated bundles with respect to fiber product preserving bundle functors. Our approach is essentially based on the Weil algebra technique and an original concept of weak principal bundle.
Let be a compact manifold let be a finite group acting freely on , and let be the (Fréchet) space of -invariant metric on . A natural conjecture is that, for a generic metric in , all eigenspaces of the Laplacian are irreducible (as orthogonal representations of ). In physics terminology, no “accidental degeneracies” occur generically. We will prove this conjecture when dim dim for all irreducibles of . As an application, we construct isospectral manifolds with simple eigenvalue...
En este artículo se considera un marco general para la precuantización geométrica de una variedad provista de un corchete que no es necesariamente de Jacobi. La existencia de una foliación generalizada permite definir una noción de fibrado de precuantización. Se estudia una aproximación alternativa suponiendo la existencia de un algebroide de Lie sobre la variedad. Se relacionan ambos enfoques y se recuperan los resultados conocidos para variedades de Poisson y Jacobi.
A Goursat structure on a manifold of dimension is a rank two distribution such that dim , for , where denote the elements of the derived flag of , defined by and . Goursat structures appeared first in the work of von Weber and Cartan, who have shown that on an open and dense subset they can be converted into the so-called Goursat normal form. Later, Goursat structures have been studied by Kumpera and Ruiz. In the paper, we introduce a new local invariant for Goursat structures, called...
A Goursat structure on a manifold of dimension n is a rank two distribution
Ɗ such that dim Ɗ(i) = i + 2, for 0 ≤ i ≤ n-2,
where Ɗ(i) denote the elements of the derived flag of
Ɗ, defined by Ɗ(0) = Ɗ and Ɗ(i+1) = Ɗ(i) + [Ɗ(i),Ɗ(i)]
.
Goursat structures appeared first in the work of von Weber and Cartan,
who have shown that on an open and dense subset they can be converted into the
so-called Goursat normal form. Later, Goursat structures have been studied by
Kumpera and Ruiz. In the paper, we introduce...
In this paper, firstly we study some left invariant Riemannian metrics on para-hypercomplex 4-dimensional Lie groups. In each Lie group, the Levi-Civita connection and sectional curvature have been given explicitly. We also show these spaces have constant negative scalar curvatures. Then by using left invariant Riemannian metrics introduced in the first part, we construct some left invariant Randers metrics of Berwald type. The explicit formulas for computing flag curvature have been obtained in...
We describe some general geometric properties of the fiber product preserving bundle functors. Special attention is paid to the vertical Weil bundles. We discuss namely the flow natural maps and the functorial prolongation of connections.
Currently displaying 381 –
400 of
622