The search session has expired. Please query the service again.
Displaying 521 –
535 of
535
Let be a Kähler surface and be a closed symplectic surface which is smoothly immersed in . Let be the Kähler angle of in . We first deduce the Euler-Lagrange equation of the functional in the class of
symplectic surfaces. It is , where is the mean curvature vector of in , is the complex structure compatible with the Kähler form in , which is an elliptic equation. We call such a surface a symplectic critical surface. We show that, if is a Kähler-Einstein surface with nonnegative...
Let be a symplectic manifold admitting a metaplectic structure (a symplectic analogue of the Riemannian spin structure) and a torsion-free symplectic connection . Symplectic Killing spinor fields for this structure are sections of the symplectic spinor bundle satisfying a certain first order partial differential equation and they are the main object of this paper. We derive a necessary condition which has to be satisfied by a symplectic Killing spinor field. Using this condition one may easily...
Summary: For a large class of classical field models used for realistic quantum field theoretic models, an infinite-dimensional supermanifold of classical solutions in Minkowski space can be constructed. This solution supermanifold carries a natural symplectic structure; the resulting Poisson brackets between the field strengths are the classical prototypes of the canonical (anti-) commutation relations. Moreover, we discuss symmetries and the Noether theorem in this context.
Exterior differential forms with values in the (Kostant’s) symplectic spinor bundle on a manifold with a given metaplectic structure are decomposed into invariant subspaces. Projections to these invariant subspaces of a covariant derivative associated to a torsion-free symplectic connection are described.
We describe all natural symplectic structures on the tangent bundles of symplectic and cosymplectic manifolds.
On décrit une approche homologique des systèmes dynamiques contraints. Cette approche, directement inspirée des travaux de D. McMullan et de M. Henneaux concernant le formalisme de Batalin, Fradkin et Vilkovisky, contient une interprétation des fantômes et de leurs conjugués. Dans le cadre des systèmes dans l’espace des phases, la construction se fait en deux étapes. La première étape consiste à construire une algèbre différentielle graduée dont la cohomologie en degré zéro est l’espace des observables...
A characterization of systems of first order differential equations with (classical) complete solutions is given. Systems with (classical) complete solutions that consist of hyperplanes are also characterized.
We introduce the notion of system of meromorphic microdifferential equations. We use it to prove a desingularization theorem for systems of microdifferential equations.
Currently displaying 521 –
535 of
535