Displaying 541 – 560 of 622

Showing per page

On the theory of the 4-quasiplanar mappings of almost quaternionic spaces

Mikeš, Josef, Němčíková, Jana, Pokorná, Olga (1998)

Proceedings of the 17th Winter School "Geometry and Physics"

Authors’ abstract: “4-quasiplanar mappings of almost quaternionic spaces with affine connection without torsion are investigated. Geometrically motivated definitions of these mappings are presented. Based an these definitions, fundamental forms of these mappings are found, which are equivalent to the forms of 4-quasiplanar mappings introduced a priori by I. Kurbatova [Sov. Math. 30, 100-104 (1986; Zbl 0602.53029)]”.

On the topological charge conservation in the three-dimensional O ( 3 ) σ -model.

Jaroslav Dittrich (1984)

Aplikace matematiky

A field of three-component unit vectors on the 2 + 1 dimensional spacetime is considered. Two field configurations with different values of the topological charge cannot be connected by the path of field configurations with a finite Euclidean action. Therefore there is no transition between them. The initial and final configurations are assumed to be continuous at infinity. The asymptotic behaviour of intermediate configurations may be arbitrary. The proof is based on the properties of the degree of...

On the torsion of linear higher order connections

Ivan Kolář (2003)

Open Mathematics

For a linear r-th order connection on the tangent bundle we characterize geometrically its integrability in the sense of the theory of higher order G-structures. Our main tool is a bijection between these connections and the principal connections on the r-th order frame bundle and the comparison of the torsions under both approaches.

On the Transformations of Symplectic Expansions and the Respective Bäcklund Transformation for the KDV Equation

Khristov, E. (2003)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: Primary: 34B40; secondary: 35Q51, 35Q53By using the Deift–Trubowitz transformations for adding or removing bound states to the spectrum of the Schrödinger operator on the line we construct a simple algorithm allowing one to reduce the problem of deriving symplectic expansions to its simplest case when the spectrum is purely continuous, and vice versa. We also obtain the transformation formulas for the correponding recursion operator. As an illustration of...

On the transverse Scalar Curvature of a Compact Sasaki Manifold

Weiyong He (2014)

Complex Manifolds

We show that the standard picture regarding the notion of stability of constant scalar curvature metrics in Kähler geometry described by S.K. Donaldson [10, 11], which involves the geometry of infinitedimensional groups and spaces, can be applied to the constant scalar curvature metrics in Sasaki geometry with only few modification. We prove that the space of Sasaki metrics is an infinite dimensional symmetric space and that the transverse scalar curvature of a Sasaki metric is a moment map of the...

On the underlying lower order bundle functors

Miroslav Doupovec (2005)

Czechoslovak Mathematical Journal

For every bundle functor we introduce the concept of subordinated functor. Then we describe subordinated functors for fiber product preserving functors defined on the category of fibered manifolds with m -dimensional bases and fibered manifold morphisms with local diffeomorphisms as base maps. In this case we also introduce the concept of the underlying functor. We show that there is an affine structure on fiber product preserving functors.

On the uniform perfectness of groups of bundle homeomorphisms

Tomasz Rybicki (2019)

Archivum Mathematicum

Groups of homeomorphisms related to locally trivial bundles are studied. It is shown that these groups are perfect. Moreover if the homeomorphism isotopy group of the base is bounded then the bundle homeomorphism group of the total space is uniformly perfect.

On the variational calculus in fibered-fibered manifolds

W. M. Mikulski (2006)

Annales Polonici Mathematici

In this paper we extend the variational calculus to fibered-fibered manifolds. Fibered-fibered manifolds are surjective fibered submersions π:Y → X between fibered manifolds. For natural numbers s ≥ r ≤ q with r ≥ 1 we define (r,s,q)th order Lagrangians on fibered-fibered manifolds π:Y → X as base-preserving morphisms λ : J r , s , q Y d i m X T * X . Then similarly to the fibered manifold case we define critical fibered sections of Y. Setting p=max(q,s) we prove that there exists a canonical “Euler” morphism ( λ ) : J r + s , 2 s , r + p Y * Y d i m X T * X of λ satisfying...

On the Weilian prolongations of natural bundles

Ivan Kolář (2012)

Czechoslovak Mathematical Journal

We characterize Weilian prolongations of natural bundles from the viewpoint of certain recent general results. First we describe the iteration F ( E M ) of two natural bundles E and F . Then we discuss the Weilian prolongation of an arbitrary associated bundle. These two auxiliary results enables us to solve our original problem.

Currently displaying 541 – 560 of 622