The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 601 –
620 of
622
In this paper, the problems on purposefully controlling chaos for a three-dimensional quadratic continuous autonomous chaotic system, namely the chaotic Pehlivan-Uyaroglu system are investigated. The chaotic system, has three equilibrium points and more interestingly the equilibrium points have golden proportion values, which can generate single folded attractor. We developed an optimal control design, in order to stabilize the unstable equilibrium points of this system. Furthermore, we propose...
The optimal control problem of variational inequality with applications to axisymmetric shells is discussed. First an existence result for the solution of the optimal control problem is given. Next is presented the formulation of first order necessary conditionas of optimality for the control problem governed by a variational inequality with its coefficients as control variables.
The motivation for this work is the real-time solution of a standard optimal control problem arising in robotics and aerospace applications. For example, the trajectory planning problem for air vehicles is naturally cast as an optimal control problem on the tangent bundle of the Lie Group which is also a parallelizable riemannian manifold. For an optimal control problem on the tangent bundle of such a manifold, we use frame co-ordinates and obtain first-order necessary conditions employing calculus...
The motivation for this work is the real-time solution of a
standard optimal control problem arising in robotics and aerospace
applications. For example, the trajectory planning problem for air
vehicles is naturally cast as an optimal control problem on the
tangent bundle of the Lie Group SE(3), which is also a
parallelizable Riemannian manifold. For an optimal control problem
on the tangent bundle of such a manifold, we use frame
co-ordinates and obtain first-order necessary conditions...
We establish optimal uniform upper estimates on heat kernels whose
generators satisfy a logarithmic Sobolev inequality (or entropy-energy
inequality) with the optimal constant of the Euclidean space.
Off-diagonals estimates may also be obtained with however a smaller d
istance involving harmonic functions. In the last part, we apply these
methods to study some heat kernel decays for diffusion operators of
the type Laplacian minus the gradient of a smooth potential with
a given growth at infinity....
We consider the wave and Schrödinger equations on a bounded open connected subset of a Riemannian manifold, with Dirichlet, Neumann or Robin boundary conditions whenever its boundary is nonempty. We observe the restriction of the solutions to a measurable subset of during a time interval with . It is well known that, if the pair satisfies the Geometric Control Condition ( being an open set), then an observability inequality holds guaranteeing that the total energy of solutions can be...
Orbits of complete families of vector fields on a subcartesian space are shown to be
smooth manifolds. This allows a description of the structure of the reduced phase space
of a Hamiltonian system in terms of the reduced Poisson algebra. Moreover, one can give a
global description of smooth geometric structures on a family of manifolds, which form a
singular foliation of a subcartesian space, in terms of objects defined on the
corresponding family of vector fields. Stratified...
Let be a principal bundle of frames with the structure group . It is shown that the variational problem, defined by -invariant Lagrangian on , can be equivalently studied on the associated space of connections with some compatibility condition, which gives us order reduction of the corresponding Euler-Lagrange equations.
Currently displaying 601 –
620 of
622