Displaying 821 – 840 of 5443

Showing per page

Complex Ginzburg-Landau equations in high dimensions and codimension two area minimizing currents

Fanghua Lin, Tristan Rivière (1999)

Journal of the European Mathematical Society

There is an obvious topological obstruction for a finite energy unimodular harmonic extension of a S 1 -valued function defined on the boundary of a bounded regular domain of R n . When such extensions do not exist, we use the Ginzburg-Landau relaxation procedure. We prove that, up to a subsequence, a sequence of Ginzburg-Landau minimizers, as the coupling parameter tends to infinity, converges to a unimodular harmonic map away from a codimension-2 minimal current minimizing the area within the homology...

Complex methods in real integral geometry

Eastwood, Michael (1997)

Proceedings of the 16th Winter School "Geometry and Physics"

This is an exposition of a general machinery developed by M. G. Eastwood, T. N. Bailey, C. R. Graham which analyses some real integral transforms using complex methods. The machinery deals with double fibrations M Ω η Ω ˜ @ > τ > > X ( Ω complex manifold; M totally real, real-analytic submanifold;...

Composition of some singular Fourier integral operators and estimates for restricted X -ray transforms

Allan Greenleaf, Gunther Uhlmann (1990)

Annales de l'institut Fourier

We establish a composition calculus for Fourier integral operators associated with a class of smooth canonical relations C ( T * X 0 ) × ( T * Y 0 ) . These canonical relations, which arise naturally in integral geometry, are such that π : C T * Y is a Whitney fold and ρ : C T * X is a blow-down mapping. If A I m ( C ) , B I m ' ( C t ) , then B A I m + m ' , 0 ( Δ , Λ ) a class of pseudodifferential operators with singular symbols. From this follows L 2 boundedness of A with a loss of 1/4 derivative.

Computing the differential of an unfolded contact diffeomorphism

Klaus Böhmer, Drahoslava Janovská, Vladimír Janovský (2003)

Applications of Mathematics

Consider a bifurcation problem, namely, its bifurcation equation. There is a diffeomorphism Φ linking the actual solution set with an unfolded normal form of the bifurcation equation. The differential D Φ ( 0 ) of this diffeomorphism is a valuable information for a numerical analysis of the imperfect bifurcation. The aim of this paper is to construct algorithms for a computation of D Φ ( 0 ) . Singularity classes containing bifurcation points with c o d i m 3 , c o r a n k = 1 are considered.

Concentration of the Brownian bridge on Cartan-Hadamard manifolds with pinched negative sectional curvature

Marc Arnaudon, Thomas Simon (2005)

Annales de l’institut Fourier

We study the rate of concentration of a Brownian bridge in time one around the corresponding geodesical segment on a Cartan-Hadamard manifold with pinched negative sectional curvature, when the distance between the two extremities tends to infinity. This improves on previous results by A. Eberle, and one of us . Along the way, we derive a new asymptotic estimate for the logarithmic derivative of the heat kernel on such manifolds, in bounded time and with one space parameter...

Currently displaying 821 – 840 of 5443