The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 161 – 180 of 490

Showing per page

The heat equation on manifolds as a gradient flow in the Wasserstein space

Matthias Erbar (2010)

Annales de l'I.H.P. Probabilités et statistiques

We study the gradient flow for the relative entropy functional on probability measures over a riemannian manifold. To this aim we present a notion of a riemannian structure on the Wasserstein space. If the Ricci curvature is bounded below we establish existence and contractivity of the gradient flow using a discrete approximation scheme. Furthermore we show that its trajectories coincide with solutions to the heat equation.

The homotopy type of the space of degree 0 immersed plane curves.

Hiroki Kodama, Peter W. Michor (2006)

Revista Matemática Complutense

The space Bi0 = Imm0 (S1, R2) / Diff (S1) of all immersions of rotation degree 0 in the plane modulo reparameterizations has homotopy groups π1(Bi0) = Z, π2(Bi0) = Z, and πk(Bi0) = 0 for k ≥ 3.

The index of a vector field tangent to a hypersurface and the signature of the relative jacobian determinant

Xavier Gómez-Mont, Pavao Mardešić (1997)

Annales de l'institut Fourier

Given a real analytic vector field tangent to a hypersurface V with an algebraically isolated singularity we introduce a relative Jacobian determinant in the finite dimensional algebra B Ann B ( h ) associated with the singularity of the vector field on V . We show that the relative Jacobian generates a 1-dimensional non-zero minimal ideal. With its help we introduce a non-degenerate bilinear pairing, and its signature measures the size of this point with sign. The signature satisfies a law of conservation of...

The index of analytic vector fields and Newton polyhedra

Carles Bivià-Ausina (2003)

Fundamenta Mathematicae

We prove that if f:(ℝⁿ,0) → (ℝⁿ,0) is an analytic map germ such that f - 1 ( 0 ) = 0 and f satisfies a certain non-degeneracy condition with respect to a Newton polyhedron Γ₊ ⊆ ℝⁿ, then the index of f only depends on the principal parts of f with respect to the compact faces of Γ₊. In particular, we obtain a known result on the index of semi-weighted-homogeneous map germs. We also discuss non-degenerate vector fields in the sense of Khovanskiĭand special applications of our results to planar analytic vector fields....

Currently displaying 161 – 180 of 490