Displaying 401 – 420 of 490

Showing per page

Expansions for Repeated Integrals of Products with Applications to the Multivariate Normal

Christopher S. Withers, Saralees Nadarajah (2012)

ESAIM: Probability and Statistics

We extend Leibniz' rule for repeated derivatives of a product to multivariate integrals of a product. As an application we obtain expansions for P(a < Y < b) for Y ~ Np(0,V) and for repeated integrals of the density of Y. When V−1y > 0 in R3 the expansion for P(Y < y) reduces to one given by [H. Ruben J. Res. Nat. Bureau Stand. B 68 (1964) 3–11]. in terms of the moments of Np(0,V−1). This is shown to be a special case of an expansion in terms of the multivariate Hermite polynomials. These...

Expansions for Repeated Integrals of Products with Applications to the Multivariate Normal

Christopher S. Withers, Saralees Nadarajah (2011)

ESAIM: Probability and Statistics

We extend Leibniz' rule for repeated derivatives of a product to multivariate integrals of a product. As an application we obtain expansions for P(a &lt; Y &lt; b) for Y ~ Np(0,V) and for repeated integrals of the density of Y. When V−1y &gt; 0 in R3 the expansion for P(Y &lt; y) reduces to one given by [H. Ruben J. Res. Nat. Bureau Stand. B 68 (1964) 3–11]. in terms of the moments of Np(0,V−1). This is shown to be a special case of an expansion in terms of the multivariate Hermite...

Explicit formulae of distributions and densities of characteristics of a dynamic advertising and pricing model

Kurt L. Helmes, Torsten Templin (2015)

Banach Center Publications

We analyze the optimal sales process of a stochastic advertising and pricing model with constant demand elasticities. We derive explicit formulae of the densities of the (optimal) sales times and (optimal) prices when a fixed finite number of units of a product are to be sold during a finite sales period or an infinite one. Furthermore, for any time t the exact distribution of the inventory, i.e. the number of unsold items, at t is determined and will be expressed in terms of elementary functions....

Explicit Karhunen-Loève expansions related to the Green function of the Laplacian

J.-R. Pycke (2006)

Banach Center Publications

Karhunen-Loève expansions of Gaussian processes have numerous applications in Probability and Statistics. Unfortunately the set of Gaussian processes with explicitly known spectrum and eigenfunctions is narrow. An interpretation of three historical examples enables us to understand the key role of the Laplacian. This allows us to extend the set of Gaussian processes for which a very explicit Karhunen-Loève expansion can be derived.

Explicit parametrix and local limit theorems for some degenerate diffusion processes

Valentin Konakov, Stéphane Menozzi, Stanislav Molchanov (2010)

Annales de l'I.H.P. Probabilités et statistiques

For a class of degenerate diffusion processes of rank 2, i.e. when only Poisson brackets of order one are needed to span the whole space, we obtain a parametrix representation of McKean–Singer [J. Differential Geom.1 (1967) 43–69] type for the density. We therefrom derive an explicit gaussian upper bound and a partial lower bound that characterize the additional singularity induced by the degeneracy. This particular representation then allows to give a local limit theorem with the usual convergence...

Currently displaying 401 – 420 of 490