Exponential approximation for hitting times in mixing processes.
We provide a new exponential concentration inequality for first passage percolation valid for a wide class of edge times distributions. This improves and extends a result by Benjamini, Kalai and Schramm (Ann. Probab.31 (2003)) which gave a variance bound for Bernoulli edge times. Our approach is based on some functional inequalities extending the work of Rossignol (Ann. Probab.35 (2006)), Falik and Samorodnitsky (Combin. Probab. Comput.16 (2007)).
If a probability density p(x) (x ∈ ℝk) is bounded and R(t) := ∫e〈x, tu〉p(x)dx < ∞ for some linear functional u and all t ∈ (0,1), then, for each t ∈ (0,1) and all large enough n, the n-fold convolution of the t-tilted density ˜pt := e〈x, tu〉p(x)/R(t) is bounded. This is a corollary of a general, “non-i.i.d.” result, which is also shown to enjoy a certain optimality property. Such results and their corollaries stated in terms of the absolute integrability of the corresponding characteristic...
If a probability density p(x) (x ∈ ℝk) is bounded and R(t) := ∫e〈x, tu〉p(x)dx < ∞ for some linear functional u and all t ∈ (0,1), then, for each t ∈ (0,1) and all large enough n, the n-fold convolution of the t-tilted density := e〈x, tu〉p(x)/R(t) is bounded. This is a corollary of a general, “non-i.i.d.” result, which is also shown to enjoy a certain optimality property. Such results and their corollaries stated in terms of the absolute integrability of the corresponding characteristic...
We study convergence to the invariant measure for a class of semilinear stochastic evolution equations driven by Lévy noise, including the case of cylindrical noise. For a certain class of equations we prove the exponential rate of convergence in the norm of total variation. Our general result is applied to a number of specific equations driven by cylindrical symmetric α-stable noise and/or cylindrical Wiener noise. We also consider the case of a "singular" Wiener process with unbounded covariance...
We consider exponential functionals of a brownian motion with drift in ℝn, defined via a collection of linear functionals. We give a characterisation of the Laplace transform of their joint law as the unique bounded solution, up to a constant factor, to a Schrödinger-type partial differential equation. We derive a similar equation for the probability density. We then characterise all diffusions which can be interpreted as having the law of the brownian motion with drift conditioned on the law of...
We establish new exponential inequalities for partial sums of random fields. Next, using classical chaining arguments, we give sufficient conditions for partial sum processes indexed by large classes of sets to converge to a set-indexed brownian motion. For stationary fields of bounded random variables, the condition is expressed in terms of a series of conditional expectations. For non-uniform -mixing random fields, we require both finite fourth moments and an algebraic decay of the mixing coefficients....
We establish new exponential inequalities for partial sums of random fields. Next, using classical chaining arguments, we give sufficient conditions for partial sum processes indexed by large classes of sets to converge to a set-indexed Brownian motion. For stationary fields of bounded random variables, the condition is expressed in terms of a series of conditional expectations. For non-uniform ϕ-mixing random fields, we require both finite fourth moments and an algebraic decay of the mixing coefficients. ...