Previous Page 25

Displaying 481 – 490 of 490

Showing per page

Extreme distribution functions of copulas

Manuel Úbeda-Flores (2008)

Kybernetika

In this paper we study some properties of the distribution function of the random variable C(X,Y) when the copula of the random pair (X,Y) is M (respectively, W) – the copula for which each of X and Y is almost surely an increasing (respectively, decreasing) function of the other –, and C is any copula. We also study the distribution functions of M(X,Y) and W(X,Y) given that the joint distribution function of the random variables X and Y is any copula.

Extreme order statistics in an equally correlated Gaussian array

Mateusz Wiśniewski (1994)

Applicationes Mathematicae

This paper contains the results concerning the weak convergence of d-dimensional extreme order statistics in a Gaussian, equally correlated array. Three types of limit distributions are found and sufficient conditions for the existence of these distributions are given.

Extreme values and kernel estimates of point processes boundaries

Stéphane Girard, Pierre Jacob (2004)

ESAIM: Probability and Statistics

We present a method for estimating the edge of a two-dimensional bounded set, given a finite random set of points drawn from the interior. The estimator is based both on a Parzen-Rosenblatt kernel and extreme values of point processes. We give conditions for various kinds of convergence and asymptotic normality. We propose a method of reducing the negative bias and edge effects, illustrated by some simulations.

Extreme values and kernel estimates of point processes boundaries

Stéphane Girard, Pierre Jacob (2010)

ESAIM: Probability and Statistics

We present a method for estimating the edge of a two-dimensional bounded set, given a finite random set of points drawn from the interior. The estimator is based both on a Parzen-Rosenblatt kernel and extreme values of point processes. We give conditions for various kinds of convergence and asymptotic normality. We propose a method of reducing the negative bias and edge effects, illustrated by some simulations.

Extremes in multivariate stationary normal sequences

Mateusz Wiśniewski (1998)

Applicationes Mathematicae

This paper deals with a weak convergence of maximum vectors built on the base of stationary and normal sequences of relatively strongly dependent random vectors. The discussion concentrates on the normality of limits and extends some results of McCormick and Mittal [4] to the multivariate case.

Extremes of periodic moving averages of random variables with regularly varying tail probabilities.

Ana Paula Martins, Helena Ferreira (2004)

SORT

We define a family of local mixing conditions that enable the computation of the extremal index of periodic sequences from the joint distributions of k consecutive variables of the sequence. By applying results, under local and global mixing conditions, to the (2m - 1)-dependent periodic sequence Xn(m) = Σj=-mm-1 cjZn-j, n ≥ 1, we compute the extremal index of the periodic moving average sequence Xn = Σj=-∞∞ cjZn-j, n ≥ 1, of random variables with regularly varying tail probabilities.This paper...

Extremes of spheroid shape factor based on two dimensional profiles

Daniel Hlubinka (2006)

Kybernetika

The extremal shape factor of spheroidal particles is studied. Three dimensional particles are considered to be observed via their two dimensional profiles and the problem is to predict the extremal shape factor in a given size class. We proof the stability of the domain of attraction of the spheroid’s and its profile shape factor under a tail equivalence condition. We show namely that the Farlie–Gumbel–Morgenstern bivariate distributions gives the tail uniformity. We provide a way how to find normalising...

Currently displaying 481 – 490 of 490

Previous Page 25