The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 41 – 60 of 186

Showing per page

Generalised regular variation of arbitrary order

Edward Omey, Johan Segers (2010)

Banach Center Publications

Let f be a measurable, real function defined in a neighbourhood of infinity. The function f is said to be of generalised regular variation if there exist functions h ≢ 0 and g > 0 such that f(xt) - f(t) = h(x)g(t) + o(g(t)) as t → ∞ for all x ∈ (0,∞). Zooming in on the remainder term o(g(t)) eventually leads to the relation f(xt) - f(t) = h₁(x)g₁(t) + ⋯ + hₙ(x)gₙ(t) + o(gₙ(t)), each g i being of smaller order than its predecessor g i - 1 . The function f is said to be generalised regularly varying of...

Generalización del teorema de Hanson y Russo para B-variables aleatorias.

Víctor Hernández, Juan J. Romo (1986)

Trabajos de Estadística

En este trabajo se presenta una generalización de un teorema de D. L. Hanson y R. P. Russo (1981) para variables aleatorias i.i.d. que toman valores en un espacio de Banach separable (B-variables), en el esquema más general de la ley de Marcinkiewicz y Zygmund.Imponiendo condiciones sobre los momentos y el tipo Rademacher del espacio se obtienen resultados de la formamáx(np/α≤j≤n) j-1/p ||Sn - Sn-j|| → 0, casi seguro, cuando n → ∞

Generalization of the Modified Bessel Function and Its Generating Function

Griffiths, J., Leonenko, G., Williams, J. (2005)

Fractional Calculus and Applied Analysis

2000 Mathematics Subject Classification: 33C10, 33-02, 60K25This paper presents new generalizations of the modified Bessel function and its generating function. This function has important application in the transient solution of a queueing system.

Currently displaying 41 – 60 of 186