The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 101 – 120 of 721

Showing per page

The brownian cactus I. Scaling limits of discrete cactuses

Nicolas Curien, Jean-François Le Gall, Grégory Miermont (2013)

Annales de l'I.H.P. Probabilités et statistiques

The cactus of a pointed graph is a discrete tree associated with this graph. Similarly, with every pointed geodesic metric space E , one can associate an -tree called the continuous cactus of E . We prove under general assumptions that the cactus of random planar maps distributed according to Boltzmann weights and conditioned to have a fixed large number of vertices converges in distribution to a limiting space called the Brownian cactus, in the Gromov–Hausdorff sense. Moreover, the Brownian cactus...

The chain records.

Gnedin, Alexander V. (2007)

Electronic Journal of Probability [electronic only]

Currently displaying 101 – 120 of 721