Displaying 1421 – 1440 of 10054

Showing per page

Bernoulli cluster field: Voronoi tessellations

Ivan Saxl, Petr Ponížil (2002)

Applications of Mathematics

A new point process is proposed which can be viewed either as a Boolean cluster model with two cluster modes or as a p -thinned Neyman-Scott cluster process with the retention of the original parent point. Voronoi tessellation generated by such a point process has extremely high coefficients of variation of cell volumes as well as of profile areas and lengths in the planar and line induced tessellations. An approximate numerical model of tessellation characteristics is developed for the case of small...

Bernoulli sequences and Borel measurability in ( 0 , 1 )

Petr Veselý (1993)

Commentationes Mathematicae Universitatis Carolinae

The necessary and sufficient condition for a function f : ( 0 , 1 ) [ 0 , 1 ] to be Borel measurable (given by Theorem stated below) provides a technique to prove (in Corollary 2) the existence of a Borel measurable map H : { 0 , 1 } { 0 , 1 } such that ( H ( X p ) ) = ( X 1 / 2 ) holds for each p ( 0 , 1 ) , where X p = ( X 1 p , X 2 p , ... ) denotes Bernoulli sequence of random variables with P [ X i p = 1 ] = p .

Bernstein inequality for the parameter of the pth order autoregressive process AR(p)

Samir Benaissa (2006)

Applicationes Mathematicae

The autoregressive process takes an important part in predicting problems leading to decision making. In practice, we use the least squares method to estimate the parameter θ̃ of the first-order autoregressive process taking values in a real separable Banach space B (ARB(1)), if it satisfies the following relation: X ̃ t = θ ̃ X ̃ t - 1 + ε ̃ t . In this paper we study the convergence in distribution of the linear operator I ( θ ̃ T , θ ̃ ) = ( θ ̃ T - θ ̃ ) θ ̃ T - 2 for ||θ̃|| > 1 and so we construct inequalities of Bernstein type for this operator.

Betti numbers of random real hypersurfaces and determinants of random symmetric matrices

Damien Gayet, Jean-Yves Welschinger (2016)

Journal of the European Mathematical Society

We asymptotically estimate from above the expected Betti numbers of random real hypersurfaces in smooth real projective manifolds. Our upper bounds grow as the square root of the degree of the hypersurfaces as the latter grows to infinity, with a coefficient involving the Kählerian volume of the real locus of the manifold as well as the expected determinant of random real symmetric matrices of given index. In particular, for large dimensions, these coefficients get exponentially small away from...

Between logic and probability.

Ton Sales (1994)

Mathware and Soft Computing

Logic and Probability, as theories, have been developed quite independently and, with a few exceptions (like Boole's), have largely ignored each other. And nevertheless they share a lot of similarities, as well a considerable common ground. The exploration of the shared concepts and their mathematical treatment and unification is here attempted following the lead of illustrious researchers (Reichenbach, Carnap, Popper, Gaifman, Scott & Krauss, Fenstad, Miller, David Lewis, Stalnaker, Hintikka...

Binary segmentation and Bonferroni-type bounds

Michal Černý (2011)

Kybernetika

We introduce the function Z ( x ; ξ , ν ) : = - x ϕ ( t - ξ ) · Φ ( ν t ) d t , where ϕ and Φ are the pdf and cdf of N ( 0 , 1 ) , respectively. We derive two recurrence formulas for the effective computation of its values. We show that with an algorithm for this function, we can efficiently compute the second-order terms of Bonferroni-type inequalities yielding the upper and lower bounds for the distribution of a max-type binary segmentation statistic in the case of small samples (where asymptotic results do not work), and in general for max-type random variables...

Currently displaying 1421 – 1440 of 10054