Displaying 1641 – 1660 of 10046

Showing per page

Chain rules and p-variation

R. Norvaiša (2002)

Studia Mathematica

The main result is a Young-Stieltjes integral representation of the composition ϕ ∘ f of two functions f and ϕ such that for some α ∈ (0,1], ϕ has a derivative satisfying a Lipschitz condition of order α, and f has bounded p-variation for some p < 1 + α. If given α ∈ (0,1], the p-variation of f is bounded for some p < 2 + α, and ϕ has a second derivative satisfying a Lipschitz condition of order α, then a similar result holds with the Young-Stieltjes integral replaced by its extension.

Changing the branching mechanism of a continuous state branching process using immigration

Romain Abraham, Jean-François Delmas (2009)

Annales de l'I.H.P. Probabilités et statistiques

We consider an initial population whose size evolves according to a continuous state branching process. Then we add to this process an immigration (with the same branching mechanism as the initial population), in such a way that the immigration rate is proportional to the whole population size. We prove this continuous state branching process with immigration proportional to its own size is itself a continuous state branching process. By considering the immigration as the apparition of a new type,...

Chaos expansions and local times.

David Nualart, Josep Vives (1992)

Publicacions Matemàtiques

In this note we prove that the Local Time at zero for a multiparametric Wiener process belongs to the Sobolev space Dk - 1/2 - ε,2 for any ε &gt; 0. We do this computing its Wiener chaos expansion. We see also that this expansion converges almost surely. Finally, using the same technique we prove similar results for a renormalized Local Time for the autointersections of a planar Brownian motion.

Chaotic behavior of infinitely divisible processes

S. Cambanis, K. Podgórski, A. Weron (1995)

Studia Mathematica

The hierarchy of chaotic properties of symmetric infinitely divisible stationary processes is studied in the language of their stochastic representation. The structure of the Musielak-Orlicz space in this representation is exploited here.

Characteristic polynomials of sample covariance matrices: The non-square case

Holger Kösters (2010)

Open Mathematics

We consider the sample covariance matrices of large data matrices which have i.i.d. complex matrix entries and which are non-square in the sense that the difference between the number of rows and the number of columns tends to infinity. We show that the second-order correlation function of the characteristic polynomial of the sample covariance matrix is asymptotically given by the sine kernel in the bulk of the spectrum and by the Airy kernel at the edge of the spectrum. Similar results are given...

Currently displaying 1641 – 1660 of 10046