The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 13 of 13

Showing per page

M -estimation in nonlinear regression for longitudinal data

Martina Orsáková (2007)

Kybernetika

The longitudinal regression model Z i j = m ( θ 0 , 𝕏 i ( T i j ) ) + ε i j , where Z i j is the j th measurement of the i th subject at random time T i j , m is the regression function, 𝕏 i ( T i j ) is a predictable covariate process observed at time T i j and ε i j is a noise, is studied in marked point process framework. In this paper we introduce the assumptions which guarantee the consistency and asymptotic normality of smooth M -estimator of unknown parameter θ 0 .

M -estimators of structural parameters in pseudolinear models

Friedrich Liese, Igor Vajda (1999)

Applications of Mathematics

Real valued M -estimators θ ^ n : = min 1 n ρ ( Y i - τ ( θ ) ) in a statistical model with observations Y i F θ 0 are replaced by p -valued M -estimators β ^ n : = min 1 n ρ ( Y i - τ ( u ( z i T β ) ) ) in a new model with observations Y i F u ( z i t β 0 ) , where z i p are regressors, β 0 p is a structural parameter and u : a structural function of the new model. Sufficient conditions for the consistency of β ^ n are derived, motivated by the sufficiency conditions for the simpler “parent estimator” θ ^ n . The result is a general method of consistent estimation in a class of nonlinear (pseudolinear) statistical problems. If...

Manifold indexed fractional fields

Jacques Istas (2012)

ESAIM: Probability and Statistics

(Local) self-similarity is a seminal concept, especially for Euclidean random fields. We study in this paper the extension of these notions to manifold indexed fields. We give conditions on the (local) self-similarity index that ensure the existence of fractional fields. Moreover, we explain how to identify the self-similar index. We describe a way of simulating Gaussian fractional fields.

Manifold indexed fractional fields∗

Jacques Istas (2012)

ESAIM: Probability and Statistics

(Local) self-similarity is a seminal concept, especially for Euclidean random fields. We study in this paper the extension of these notions to manifold indexed fields. We give conditions on the (local) self-similarity index that ensure the existence of fractional fields. Moreover, we explain how to identify the self-similar index. We describe a way of simulating Gaussian fractional fields.

Minimum distance estimator for a hyperbolic stochastic partial differentialequation

Vincent Monsan, Modeste N'zi (2000)

Applicationes Mathematicae

We study a minimum distance estimator in L 2 -norm for a class ofnonlinear hyperbolic stochastic partial differential equations, driven by atwo-parameter white noise. The consistency and asymptotic normality of thisestimator are established under some regularity conditions on thecoefficients. Our results are applied to the two-parameterOrnstein-Uhlenbeck process.

Currently displaying 1 – 13 of 13

Page 1