The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 401 –
420 of
501
We consider the numerical solution, in two- and three-dimensional
bounded domains, of the inverse problem for identifying the location
of small-volume, conductivity imperfections in a medium with homogeneous
background. A dynamic approach, based on the wave equation, permits
us to treat the important case of “limited-view” data. Our numerical
algorithm is based on the coupling of a finite element solution of
the wave equation, an exact controllability method and finally a Fourier
inversion for...
The paper is devoted to solving boundary value problems for self-adjoint linear differential equations of th order in the case that the corresponding differential operator is self-adjoint and positive semidefinite. The method proposed consists in transforming the original problem to solving several initial value problems for certain systems of first order ODEs. Even if this approach may be used for quite general linear boundary value problems, the new algorithms described here exploit the special...
The Lobatto-Jacobi numerical integration rule can be extended so as to apply to the numerical evaluation of Cauchy type principal value integrals and the numerical solution of singular intergral equations with Cauchy type kernels by reduction to systems of linear equations. To this end, the integrals in such a singular integral equation are replaced by sums, as if they were regular integrals, after the singular integral equation is applied at appropriately selected points of the integration interval....
Mathematics Subject Classi¯cation 2010: 26A33, 65D25, 65M06, 65Z05.In the present paper we solve space-time fractional diffusion-wave equation with two space variables, using the matrix method. Here, in particular, we give solutions to classical diffusion and wave equations and fractional diffusion and wave equations with different combinations of time and space fractional derivatives. We also plot some graphs for these problems with the help of MATLAB routines.
We consider Sturm-Liouville differential operators on a finite interval with discontinuous potentials having one jump. As the main result we obtain a procedure of recovering the location of the discontinuity and the height of the jump. Using our result, we apply a generalized Rundell-Sacks algorithm of Rafler and Böckmann for a more effective reconstruction of the potential and present some numerical examples.
Currently displaying 401 –
420 of
501