Displaying 401 – 420 of 498

Showing per page

Numerical solution of boundary value problems for selfadjoint differential equations of 2 n th order

Jiří Taufer (2004)

Applications of Mathematics

The paper is devoted to solving boundary value problems for self-adjoint linear differential equations of 2 n th order in the case that the corresponding differential operator is self-adjoint and positive semidefinite. The method proposed consists in transforming the original problem to solving several initial value problems for certain systems of first order ODEs. Even if this approach may be used for quite general linear boundary value problems, the new algorithms described here exploit the special...

Numerical solution of Cauchy type singular integral equations by use of the Lobatto-Jacobi numerical integration rule

Nikolaos I. Ioakimidis, Pericles S. Theocaris (1978)

Aplikace matematiky

The Lobatto-Jacobi numerical integration rule can be extended so as to apply to the numerical evaluation of Cauchy type principal value integrals and the numerical solution of singular intergral equations with Cauchy type kernels by reduction to systems of linear equations. To this end, the integrals in such a singular integral equation are replaced by sums, as if they were regular integrals, after the singular integral equation is applied at appropriately selected points of the integration interval....

Numerical Solution of Fractional Diffusion-Wave Equation with two Space Variables by Matrix Method

Garg, Mridula, Manohar, Pratibha (2010)

Fractional Calculus and Applied Analysis

Mathematics Subject Classi¯cation 2010: 26A33, 65D25, 65M06, 65Z05.In the present paper we solve space-time fractional diffusion-wave equation with two space variables, using the matrix method. Here, in particular, we give solutions to classical diffusion and wave equations and fractional diffusion and wave equations with different combinations of time and space fractional derivatives. We also plot some graphs for these problems with the help of MATLAB routines.

Numerical solution of inverse spectral problems for Sturm-Liouville operators with discontinuous potentials

Liubov Efremova, Gerhard Freiling (2013)

Open Mathematics

We consider Sturm-Liouville differential operators on a finite interval with discontinuous potentials having one jump. As the main result we obtain a procedure of recovering the location of the discontinuity and the height of the jump. Using our result, we apply a generalized Rundell-Sacks algorithm of Rafler and Böckmann for a more effective reconstruction of the potential and present some numerical examples.

Numerical solution of parabolic equations in high dimensions

Tobias Von Petersdorff, Christoph Schwab (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider the numerical solution of diffusion problems in ( 0 , T ) × Ω for Ω d and for T > 0 in dimension d 1 . We use a wavelet based sparse grid space discretization with mesh-width h and order p 1 , and h p discontinuous Galerkin time-discretization of order r = O ( log h ) on a geometric sequence of O ( log h ) many time steps. The linear systems in each time step are solved iteratively by O ( log h ) GMRES iterations with a wavelet preconditioner. We prove that this algorithm gives an L 2 ( Ω ) -error of O ( N - p ) for u ( x , T ) where N is the total number of operations,...

Numerical solution of parabolic equations in high dimensions

Tobias von Petersdorff, Christoph Schwab (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the numerical solution of diffusion problems in (0,T) x Ω for Ω d and for T > 0 in dimension dd ≥ 1. We use a wavelet based sparse grid space discretization with mesh-width h and order pd ≥ 1, and hp discontinuous Galerkin time-discretization of order r = O ( log h ) on a geometric sequence of O ( log h ) many time steps. The linear systems in each time step are solved iteratively by O ( log h ) GMRES iterations with a wavelet preconditioner. We prove that this algorithm gives an L2(Ω)-error of O(N-p) for u(x,T)...

Currently displaying 401 – 420 of 498