The search session has expired. Please query the service again.

Displaying 1221 – 1240 of 9187

Showing per page

Algebraic spectral gaps

Amaury Mouchet (2012)

ESAIM: Proceedings

For the one-dimensional Schrödinger equation, some real intervals with no eigenvalues (the spectral gaps) may be obtained rather systematically with a method proposed by H. Giacomini and A. Mouchet in 2007. The present article provides some alternative formulation of this method, suggests some possible generalizations and extensively discusses the higher-dimensional case.

Algebras of approximation sequences: Fredholm theory in fractal algebras

Steffen Roch (2002)

Studia Mathematica

The present paper is a continuation of [5, 7] where a Fredholm theory for approximation sequences is proposed and some of its properties and consequences are studied. Here this theory is specified to the class of fractal approximation methods. The main result is a formula for the so-called α-number of an approximation sequence (Aₙ) which is the analogue of the kernel dimension of a Fredholm operator.

Currently displaying 1221 – 1240 of 9187