An Algorithm for Scaling Matrices and Computing the Minimum Cycle Mean in a Digraph.
An alternating-direction iterative procedure is described for a class of Helmholz-like problems. An algorithm for the selection of the iteration parameters is derived; the parameters are complex with some having positive real part and some negative, reflecting the noncoercivity and nonsymmetry of the finite element or finite difference matrix. Examples are presented, with an applications to wave propagation.
Most of the earlier work on clustering has mainly been focused on numerical data whose inherent geometric properties can be exploited to naturally define distance functions between data points. Recently, the problem of clustering categorical data has started drawing interest. However, the computational cost makes most of the previous algorithms unacceptable for clustering very large databases. The -means algorithm is well known for its efficiency in this respect. At the same time, working only on...