Initial-value methods for computing eigenvalues of two point boundary value problem
A class of compatible spatial discretizations for solving partial differential equations is presented. A discrete exact sequence framework is developed to classify these methods which include the mimetic and the covolume methods as well as certain low-order finite element methods. This construction ensures discrete analogs of the differential operators that satisfy the identities and theorems of vector calculus, in particular a Helmholtz decomposition theorem for the discrete function spaces. This...
In linear regression models the estimator of variance components needs a suitable choice of a starting point for an iterative procedure for a determination of the estimate. The aim of this paper is to find a criterion for a decision whether a linear regression model enables to determine the estimate reasonably and whether it is possible to do so when using the given data.
The Bilevel Knapsack Problem (BKP) is a hierarchical optimization problem in which the feasible set is determined by the set of optimal solutions of parametric Knapsack Problem. In this paper, we propose two stages exact method for solving the BKP. In the first stage, a dynamic programming algorithm is used to compute the set of reactions of the follower. The second stage consists in solving an integer program reformulation of BKP. We show that the...
A new system of integral equations for the exterior 2D time harmonic scattering problem is investigated. This system was first proposed by B. Després in [11]. Two new derivations of this system are given: one from elementary manipulations of classical equations, the other based on a minimization of a quadratic functional. Numerical issues are addressed to investigate the potential of the method.
In this article, the attention is paid to Fourier, wavelet and Radon transforms. A short description of them is given. Their application in signal processing especially for repairing sound and reconstructing image is outlined together with several simple examples.
The purpose of this paper is to apply particle methods to the numerical solution of the EPDiff equation. The weak solutions of EPDiff are contact discontinuities that carry momentum so that wavefront interactions represent collisions in which momentum is exchanged. This behavior allows for the description of many rich physical applications, but also introduces difficult numerical challenges. We present a particle method for the EPDiff equation that is well-suited for this class of solutions and...
The purpose of this paper is to apply particle methods to the numerical solution of the EPDiff equation. The weak solutions of EPDiff are contact discontinuities that carry momentum so that wavefront interactions represent collisions in which momentum is exchanged. This behavior allows for the description of many rich physical applications, but also introduces difficult numerical challenges. We present a particle method for the EPDiff equation that...