Displaying 301 – 320 of 549

Showing per page

Numerical analysis of a transmission problem with Signorini contact using mixed-FEM and BEM*

Gabriel N. Gatica, Matthias Maischak, Ernst P. Stephan (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is concerned with the dual formulation of the interface problem consisting of a linear partial differential equation with variable coefficients in some bounded Lipschitz domain Ω in n (n ≥ 2) and the Laplace equation with some radiation condition in the unbounded exterior domain Ωc := n Ω ¯ . The two problems are coupled by transmission and Signorini contact conditions on the interface Γ = ∂Ω. The exterior part of the interface problem is rewritten using a Neumann to Dirichlet mapping...

Numerical simulations of glacial rebound using preconditioned iterative solution methods

Erik Bängtsson, Maya Neytcheva (2005)

Applications of Mathematics

This paper discusses finite element discretization and preconditioning strategies for the iterative solution of nonsymmetric indefinite linear algebraic systems of equations arising in modelling of glacial rebound processes. Some numerical experiments for the purely elastic model setting are provided. Comparisons of the performance of the iterative solution method with a direct solution method are included as well.

Numerical study of two sparse AMG-methods

Janne Martikainen (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A sparse algebraic multigrid method is studied as a cheap and accurate way to compute approximations of Schur complements of matrices arising from the discretization of some symmetric and positive definite partial differential operators. The construction of such a multigrid is discussed and numerical experiments are used to verify the properties of the method.

Numerical Study of Two Sparse AMG-methods

Janne Martikainen (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A sparse algebraic multigrid method is studied as a cheap and accurate way to compute approximations of Schur complements of matrices arising from the discretization of some symmetric and positive definite partial differential operators. The construction of such a multigrid is discussed and numerical experiments are used to verify the properties of the method.

Currently displaying 301 – 320 of 549