The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 2

Displaying 21 – 38 of 38

Showing per page

Sparse finite element methods for operator equations with stochastic data

Tobias von Petersdorff, Christoph Schwab (2006)

Applications of Mathematics

Let A V V ' be a strongly elliptic operator on a d -dimensional manifold D (polyhedra or boundaries of polyhedra are also allowed). An operator equation A u = f with stochastic data f is considered. The goal of the computation is the mean field and higher moments 1 u V , 2 u V V , ... , k u V V of the solution. We discretize the mean field problem using a FEM with hierarchical basis and N degrees of freedom. We present a Monte-Carlo algorithm and a deterministic algorithm for the approximation of the moment k u for k 1 . The key tool...

Spectral methods for singular perturbation problems

Wilhelm Heinrichs (1994)

Applications of Mathematics

We study spectral discretizations for singular perturbation problems. A special technique of stabilization for the spectral method is proposed. Boundary layer problems are accurately solved by a domain decomposition method. An effective iterative method for the solution of spectral systems is proposed. Suitable components for a multigrid method are presented.

Sweeping preconditioners for elastic wave propagation with spectral element methods

Paul Tsuji, Jack Poulson, Björn Engquist, Lexing Ying (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present a parallel preconditioning method for the iterative solution of the time-harmonic elastic wave equation which makes use of higher-order spectral elements to reduce pollution error. In particular, the method leverages perfectly matched layer boundary conditions to efficiently approximate the Schur complement matrices of a block LDLT factorization. Both sequential and parallel versions of the algorithm are discussed and results for large-scale problems from exploration geophysics are presented....

Currently displaying 21 – 38 of 38

Previous Page 2