The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 181 – 200 of 272

Showing per page

Opposing flows in a one dimensional convection-diffusion problem

Eugene O’Riordan (2012)

Open Mathematics

In this paper, we examine a particular class of singularly perturbed convection-diffusion problems with a discontinuous coefficient of the convective term. The presence of a discontinuous convective coefficient generates a solution which mimics flow moving in opposing directions either side of some flow source. A particular transmission condition is imposed to ensure that the differential operator is stable. A piecewise-uniform Shishkin mesh is combined with a monotone finite difference operator...

Optimal Convective Heat-Transport

Josef Dalík, Oto Přibyl (2011)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

The one-dimensional steady-state convection-diffusion problem for the unknown temperature y ( x ) of a medium entering the interval ( a , b ) with the temperature y min and flowing with a positive velocity v ( x ) is studied. The medium is being heated with an intensity corresponding to y max - y ( x ) for a constant y max > y min . We are looking for a velocity v ( x ) with a given average such that the outflow temperature y ( b ) is maximal and discuss the influence of the boundary condition at the point b on the “maximizing” function v ( x ) .

Optimal design of an elastic beam with a unilateral elastic foundation: semicoercive state problem

Roman Šimeček (2013)

Applications of Mathematics

A design optimization problem for an elastic beam with a unilateral elastic foundation is analyzed. Euler-Bernoulli's model for the beam and Winkler's model for the foundation are considered. The state problem is represented by a nonlinear semicoercive problem of 4th order with mixed boundary conditions. The thickness of the beam and the stiffness of the foundation are optimized with respect to a cost functional. We establish solvability conditions for the state problem and study the existence of...

Raman laser : mathematical and numerical analysis of a model

François Castella, Philippe Chartier, Erwan Faou, Dominique Bayart, Florence Leplingard, Catherine Martinelli (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we study a discrete Raman laser amplification model given as a Lotka-Volterra system. We show that in an ideal situation, the equations can be written as a Poisson system with boundary conditions using a global change of coordinates. We address the questions of existence and uniqueness of a solution. We deduce numerical schemes for the approximation of the solution that have good stability.

Raman laser: mathematical and numerical analysis of a model

François Castella, Philippe Chartier, Erwan Faou, Dominique Bayart, Florence Leplingard, Catherine Martinelli (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we study a discrete Raman laser amplification model given as a Lotka-Volterra system. We show that in an ideal situation, the equations can be written as a Poisson system with boundary conditions using a global change of coordinates. We address the questions of existence and uniqueness of a solution. We deduce numerical schemes for the approximation of the solution that have good stability.

Currently displaying 181 – 200 of 272