The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 81 –
100 of
157
A number of approaches for discretizing partial differential equations with random data are based on generalized polynomial chaos expansions of random variables. These constitute generalizations of the polynomial chaos expansions introduced by Norbert Wiener to expansions in polynomials orthogonal with respect to non-Gaussian probability measures. We present conditions on such measures which imply mean-square convergence of generalized polynomial chaos expansions to the correct limit and complement...
A number of approaches for discretizing partial differential equations with random data
are based on generalized polynomial chaos expansions of random variables. These constitute
generalizations of the polynomial chaos expansions introduced by Norbert Wiener to
expansions in polynomials orthogonal with respect to non-Gaussian probability measures. We
present conditions on such measures which imply mean-square convergence of generalized
polynomial...
Si discretizza il problema dell'ostacolo parabolico con differenze all'indietro nel tempo ed elementi finiti lineari nello spazio e si dimostrano stime dell'errore per la frontiera libera discreta.
In this article we consider elliptic partial differential equations with random coefficients and/or random forcing terms. In the current treatment of such problems by stochastic Galerkin methods it is standard to assume that the random diffusion coefficient is bounded by positive deterministic constants or modeled as lognormal random field. In contrast, we make the significantly weaker assumption that the non-negative random coefficients can be bounded strictly away from zero and infinity by random...
The LBB condition is well-known to guarantee the stability of a finite
element (FE) velocity - pressure pair in incompressible flow calculations.
To ensure the condition to be satisfied a certain constant should be positive and
mesh-independent. The paper studies the dependence of the LBB condition on the
domain geometry. For model domains such as strips and rings the
substantial dependence of this constant on geometry aspect ratios is observed.
In domains with highly anisotropic substructures...
This paper is concerned with the analysis of the finite element method for the numerical solution of an elliptic boundary value problem with a nonlinear Newton boundary condition in a two-dimensional polygonal domain. The weak solution loses regularity in a neighbourhood of boundary singularities, which may be at corners or at roots of the weak solution on edges. The main attention is paid to the study of error estimates. It turns out that the order of convergence is not dampened by the nonlinearity...
The existence and the unicity of a weak solution of the boundary value problem for a shallow shell reinforced with stiffening ribs is proved by the direct variational method. The boundary value problem is solved in the space , on which the corresponding bilinear form is coercive. A finite element method for numerical solution is introduced. The approximate solutions converge to a weak solution in the space .
In this note we present an algorithm for a construction of strongly regular families of triangulations for planar domains with a piecewise curved boundary. Some additional properties of the resulting triangulations are considered.
The paper is concerned with the study of an elliptic boundary value problem with a nonlinear Newton boundary condition considered in a two-dimensional nonpolygonal domain with a curved boundary. The existence and uniqueness of the solution of the continuous problem is a consequence of the monotone operator theory. The main attention is paid to the effect of the basic finite element variational crimes: approximation of the curved boundary by a polygonal one and the evaluation of integrals by numerical...
Currently displaying 81 –
100 of
157