The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
After reviewing some of the properties of wavelet bases, and in particular the property of characterisation of function spaces via wavelet coefficients, we describe two new approaches to, respectively, stabilisation of numerically unstable PDE's and to non linear (adaptive) solution of PDE's, which are made possible by these properties.
Hard clamped and hard simply supported elastic plate is considered. The mixed finite element analysis combined with some interpolation, proposed by Brezzi, Fortin and Stenberg, is extended to the case of variable thickness and anisotropic material.
In the framework of the linear fracture theory, a commonly-used tool
to describe the smooth evolution of a crack embedded in a bounded domain Ω is the so-called
energy release rate defined as the variation of the mechanical
energy with respect to the crack dimension. Precisely, the
well-known Griffith's criterion postulates the evolution of the
crack if this rate reaches a critical value. In this work, in the anti-plane scalar case, we
consider the shape design problem which consists in optimizing...
Maximization problems are formulated for a class of quasistatic problems in the deformation theory of plasticity with respect to an uncertainty in the material function. Approximate problems are introduced on the basis of cubic Hermite splines and finite elements. The solvability of both continuous and approximate problems is proved and some convergence analysis presented.
Error estimates of finite element methods for reaction-diffusion problems are often realized in the related energy norm. In the singularly perturbed case, however, this norm is not adequate. A different scaling of the seminorm leads to a balanced norm which reflects the layer behavior correctly. We discuss the difficulties which arise for systems of reaction-diffusion problems.
Meshless methods have become an effective tool for solving problems from engineering practice in last years. They have been successfully applied to problems in solid and fluid mechanics. One of their advantages is that they do not require any explicit mesh in computation. This is the reason why they are useful in the case of large deformations, crack propagations and so on. Reproducing kernel particle method (RKPM) is one of meshless methods. In this contribution we deal with some modifications...
This paper is concerned with the unilateral contact problem
in linear elasticity. We define two a posteriori error estimators of residual type
to evaluate the accuracy of the mixed finite element approximation of the contact problem.
Upper and lower bounds of the discretization error are proved for
both estimators and several computations are performed to
illustrate the theoretical results.
We analyze residual and hierarchical a posteriori error estimates for nonconforming finite element approximations of elliptic problems with variable coefficients. We consider a finite volume box scheme equivalent to a nonconforming mixed finite element method in a Petrov–Galerkin setting. We prove that all the estimators yield global upper and local lower bounds for the discretization error. Finally, we present results illustrating the efficiency of the estimators, for instance, in the simulation...
We analyze residual and hierarchical
a posteriori error estimates for nonconforming finite element
approximations of elliptic problems with variable coefficients.
We consider a finite volume box scheme equivalent to
a nonconforming mixed finite element method in a Petrov–Galerkin
setting. We prove that
all the estimators yield global upper and local lower bounds for the discretization
error. Finally, we present results illustrating the efficiency of the
estimators, for instance, in the simulation...
We consider H(curl;Ω)-elliptic problems that have been discretized by
means of Nédélec's edge elements on tetrahedral meshes. Such
problems
occur in the numerical computation of eddy currents. From the defect
equation we derive localized expressions that can be used
as a posteriori error estimators to control adaptive
refinement.
Under certain assumptions on material parameters and computational
domains, we derive local lower bounds and a global upper bound for the
total error measured in...
Currently displaying 1 –
20 of
29