The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 81 –
100 of
114
Soit un opérateur non nécessairement linéaire d’un Hilbert de l’équation , pour donné dans . Nous étudions la convergence du schéma itératif suivant: aou est fonction d’un opérateur auto-adjoint choisi de telle sorte que l’inversion de soit immédiate numériquement. Par exemple avec un entier et une constante convenablement choisis.
Nous appliquons les résultats à un problème aux limites non linéaires avec résultats numériques.
Making use of a surface integral defined without use of the partition of unity, trace theorems and the Gauss-Ostrogradskij theorem are proved in the case of three-dimensional domains with a Lipschitz-continuous boundary for functions belonging to the Sobolev spaces
Currently displaying 81 –
100 of
114