The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 41 –
60 of
449
The aim of this paper is to study a quasistatic unilateral contact problem between an elastic body and a foundation. The constitutive law is nonlinear and the contact is modelled with a normal compliance condition associated to a unilateral constraint and Coulomb's friction law. The adhesion between contact surfaces is taken into account and is modelled with a surface variable, the bonding field, whose evolution is described by a first-order differential equation. We establish a variational formulation...
The operator , , , is shown to be essentially self-adjoint, positive definite with a compact resolvent. The conditions on (in fact, on a general symmetric operator) are given so as to justify the application of the Fourier method for solving the problems of the types and , respectively.
In this report, a control method for the stabilization of periodic orbits for a class of one- and two-dimensional discrete-time systems that are topologically conjugate to symbolic dynamical systems is proposed and applied to a population model in an ecosystem and the Smale horseshoe map. A periodic orbit is assigned as a target by giving a sequence in which symbols have periodicity. As a consequence, it is shown that any periodic orbits can be globally stabilized by using arbitrarily small control...
Rate-independent evolution for material models with nonconvex elastic energies is studied without any spatial regularization of the inner variable; due to lack of convexity, the model is developed in the framework of Young measures. An existence result for the quasistatic evolution is obtained in terms of compatible systems of Young measures. We also show as this result can be equivalently reformulated with probabilistic language and leads to the description of the quasistatic evolution in terms...
Rate-independent evolution for material models with nonconvex
elastic energies is studied without any spatial regularization of
the inner variable; due to lack of convexity, the model is developed
in the framework of Young measures. An existence result for the
quasistatic evolution is obtained in terms of compatible systems of
Young measures. We also show as this result can be equivalently
reformulated with probabilistic language and leads to the
description of the quasistatic evolution in terms...
In this paper, a dynamic viscoelastic problem is numerically studied. The variational problem is written in terms of the velocity field and it leads to a parabolic linear variational equation. A fully discrete scheme is introduced by using the finite element method to approximate the spatial variable and an Euler scheme to discretize time derivatives. An a priori error estimates result is recalled, from which the linear convergence is derived under suitable regularity conditions. Then, an a posteriori...
In this paper, a dynamic viscoelastic problem is numerically studied. The variational
problem is written in terms of the velocity field and it leads to a parabolic linear
variational equation. A fully discrete scheme is introduced by using the
finite element method to approximate the spatial variable and
an Euler scheme to discretize time derivatives. An a priori error estimates
result is recalled, from which the linear convergence is derived under suitable
regularity conditions. Then, an a posteriori
error...
In this paper the contact problem for a cylindrical shell and a stiff punch is studied. The existence and uniqueness of a solution is verified. The finite element method is discussed.
We study a thermo-mechanical system consisting of an elastic membrane to which a shape-memory rod is glued. The slow movements of the membrane are controlled by the motions of the attached rods. A quasi-static model is used. We include the elastic feedback of the membrane on the rods. This results in investigating an elliptic boundary value problem in a domain Ω ⊂ R^2 with a cut, coupled with non-linear equations for the vertical motions of the rod and the temperature on the rod. We prove the existence...
An extension is proposed of a classical approximate method for estimating the stress state in an elastic rod obliquely colliding against a rigid wall.
The tetrahedral stress element is introduced and two different types of a finite piecewise linear approximation of the dual elasticity problem are investigated on a polyhedral domain. Fot both types a priori error estimates in -norm and in -norm are established, provided the solution is smooth enough. These estimates are based on the fact that for any polyhedron there exists a strongly regular family of decomprositions into tetrahedra, which is proved in the paper, too.
Currently displaying 41 –
60 of
449