Previous Page 3

Displaying 41 – 51 of 51

Showing per page

On the stability of compressible Navier-Stokes-Korteweg equations

Tong Tang, Hongjun Gao (2014)

Annales Polonici Mathematici

We consider the compressible Navier-Stokes-Korteweg (N-S-K) equations. Through a remarkable identity, we reveal a relationship between the quantum hydrodynamic system and capillary fluids. Using some interesting inequalities from quantum fluids theory, we prove the stability of weak solutions for the N-S-K equations in the periodic domain Ω = N , when N=2,3.

On the two-dimensional compressible isentropic Navier–Stokes equations

Catherine Giacomoni, Pierre Orenga (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We analyze the compressible isentropic Navier–Stokes equations (Lions, 1998) in the two-dimensional case with γ = c p / c v = 2 . These equations also modelize the shallow water problem in height-flow rate formulation used to solve the flow in lakes and perfectly well-mixed sea. We establish a convergence result for the time-discretized problem when the momentum equation and the continuity equation are solved with the Galerkin method, without adding a penalization term in the continuity equation as it is made in...

On the two-dimensional compressible isentropic Navier–Stokes equations

Catherine Giacomoni, Pierre Orenga (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We analyze the compressible isentropic Navier–Stokes equations (Lions, 1998) in the two-dimensional case with γ = c p / c v = 2 . These equations also modelize the shallow water problem in height-flow rate formulation used to solve the flow in lakes and perfectly well-mixed sea. We establish a convergence result for the time-discretized problem when the momentum equation and the continuity equation are solved with the Galerkin method, without adding a penalization term in the continuity equation as it is made in Lions...

On the variational inequality approach to compressible flows via hodograph method.

Lisa Santos (1993)

Revista Matemática de la Universidad Complutense de Madrid

We study the flow of a compressible, stationary and irrotational fluid with wake, in a channel, around a convex symmetric profile, with assigned velocity q-infinity at infinity and q-s < q-infinity at the wake. In particular, we study the regularity of the free boundary (for a problem which has non-constant coefficients), in the hodograph plane.

On weak solutions of steady Navier-Stokes equations for monatomic gas

Jan Březina, Antonín Novotný (2008)

Commentationes Mathematicae Universitatis Carolinae

We use L estimates for the inverse Laplacian of the pressure introduced by Plotnikov, Sokolowski and Frehse, Goj, Steinhauer together with the nonlinear potential theory due to Adams, Hedberg, to get a priori estimates and to prove existence of weak solutions to steady isentropic Navier-Stokes equations with the adiabatic constant γ > 1 3 ( 1 + 13 ) 1 . 53 for the flows powered by volume non-potential forces and with γ > 1 8 ( 3 + 41 ) 1 . 175 for the flows powered by potential forces and arbitrary non-volume forces. According to our knowledge,...

On weak-strong uniqueness property for full compressible magnetohydrodynamics flows

Weiping Yan (2013)

Open Mathematics

This paper is devoted to the study of the weak-strong uniqueness property for full compressible magnetohydrodynamics flows. The governing equations for magnetohydrodynamic flows are expressed by the full Navier-Stokes system for compressible fluids enhanced by forces due to the presence of the magnetic field as well as the gravity and an additional equation which describes the evolution of the magnetic field. Using the relative entropy inequality, we prove that a weak solution coincides with the...

Currently displaying 41 – 51 of 51

Previous Page 3