Displaying 121 – 140 of 697

Showing per page

Boundary control of the Maxwell dynamical system: lack of controllability by topological reasons

Mikhail Belishev, Aleksandr Glasman (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The paper deals with a boundary control problem for the Maxwell dynamical system in a bounbed domain Ω ⊂ R3. Let ΩT ⊂ Ω be the subdomain filled by waves at the moment T, T* the moment at which the waves fill the whole of Ω. The following effect occurs: for small enough T the system is approximately controllable in ΩT whereas for larger T < T* a lack of controllability is possible. The subspace of unreachable states is of finite dimension determined by topological characteristics of ΩT.

Boundary integral formulae for the reconstruction of electric and electromagnetic inhomogeneities of small volume

Habib Ammari, Shari Moskow, Michael S. Vogelius (2003)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we discuss the approximate reconstruction of inhomogeneities of small volume. The data used for the reconstruction consist of boundary integrals of the (observed) electromagnetic fields. The numerical algorithms discussed are based on highly accurate asymptotic formulae for the electromagnetic fields in the presence of small volume inhomogeneities.

Boundary integral formulae for the reconstruction of electric and electromagnetic inhomogeneities of small volume

Habib Ammari, Shari Moskow, Michael S. Vogelius (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we discuss the approximate reconstruction of inhomogeneities of small volume. The data used for the reconstruction consist of boundary integrals of the (observed) electromagnetic fields. The numerical algorithms discussed are based on highly accurate asymptotic formulae for the electromagnetic fields in the presence of small volume inhomogeneities.

Boundary layer correctors and generalized polarization tensor for periodic rough thin layers. A review for the conductivity problem

Clair Poignard (2012)

ESAIM: Proceedings

We study the behaviour of the steady-state voltage potential in a material composed of a two-dimensional object surrounded by a rough thin layer and embedded in an ambient medium. The roughness of the layer is supposed to be εα–periodic, ε being the magnitude of the mean thickness of the layer, and α a positive parameter describing the degree of roughness. For ε tending to zero, we determine the appropriate boundary layer correctors which lead to approximate transmission conditions equivalent to...

Boundary stabilization of Maxwell’s equations with space-time variable coefficients

Serge Nicaise, Cristina Pignotti (2003)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the stabilization of Maxwell’s equations with space-time variable coefficients in a bounded region with a smooth boundary by means of linear or nonlinear Silver–Müller boundary condition. This is based on some stability estimates that are obtained using the “standard” identity with multiplier and appropriate properties of the feedback. We deduce an explicit decay rate of the energy, for instance exponential, polynomial or logarithmic decays are available for appropriate feedbacks.

Boundary stabilization of Maxwell's equations with space-time variable coefficients

Serge Nicaise, Cristina Pignotti (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the stabilization of Maxwell's equations with space-time variable coefficients in a bounded region with a smooth boundary by means of linear or nonlinear Silver–Müller boundary condition. This is based on some stability estimates that are obtained using the “standard" identity with multiplier and appropriate properties of the feedback. We deduce an explicit decay rate of the energy, for instance exponential, polynomial or logarithmic decays are available for appropriate feedbacks. ...

C++ tools to construct our user-level language

Frédéric Hecht (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The aim of this paper is to present how to make a dedicaded computed language polymorphic and multi type, in C++to solve partial differential equations with the finite element method. The driving idea is to make the language as close as possible to the mathematical notation.

C++ Tools to construct our user-level language

Frédéric Hecht (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The aim of this paper is to present how to make a dedicaded computed language polymorphic and multi type, in C++ to solve partial differential equations with the finite element method. The driving idea is to make the language as close as possible to the mathematical notation.

Calculation of the magnetic field due to a bioelectric current dipole in an ellipsoid

Andrei Irimia (2008)

Applications of Mathematics

The bioelectric current dipole model is important both theoretically and computationally in the study of electrical activity in the brain and stomach due to the resemblance of the shape of these two organs to an ellipsoid. To calculate the magnetic field 𝐁 due to a dipole in an ellipsoid, one must evaluate truncated series expansions involving ellipsoidal harmonics 𝔼 n m , which are products of Lamé functions. In this article, we extend a strictly analytic model (G. Dassios and F. Kariotou, J. Math....

Cloaking via anomalous localized resonance for doubly complementary media in the quasistatic regime

Hoai-Minh Nguyen (2015)

Journal of the European Mathematical Society

This paper is devoted to the study of cloaking via anomalous localized resonance (CALR) in the two- and three-dimensional quasistatic regimes. CALR associated with negative index materials was discovered by Milton and Nicorovici [21] for constant plasmonic structures in the two-dimensional quasistatic regime. Two key features of this phenomenon are the localized resonance, i.e., the fields blow up in some regions and remain bounded in some others, and the connection between the localized resonance...

Comparison of Vlasov solvers for spacecraft charging simulation

Nicolas Vauchelet, Jean-Paul Dudon, Christophe Besse, Thierry Goudon (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The modelling and the numerical resolution of the electrical charging of a spacecraft in interaction with the Earth magnetosphere is considered. It involves the Vlasov-Poisson system, endowed with non standard boundary conditions. We discuss the pros and cons of several numerical methods for solving this system, using as benchmark a simple 1D model which exhibits the main difficulties of the original models.

Currently displaying 121 – 140 of 697